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int x = input();

if (x == 0) {
abort(); state 1
} else { (x=2}4L{1=0})
return x; state 1’
} ({x = 2}, {1 = 0})
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Address Translation in KLEE

Used for external

« What is the address of x? function calls

KLEE Process

state 1 00 00 00 00 FE FE FE FE

OxDEADBEEF
state 1’ FF FF FF FF
OxFACEFEED

state 2 00 00 00 00 FE FE FE FE
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* For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

— POR-SE [Symbolic partial-order execution for testing multi-threaded
programs. Schemmel et al. CAV 2020]

— SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et
al. CAV 2018]
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The Need for Deterministic Memory Allocation

* For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

— POR-SE [Symbolic partial-order execution for testing multi-threaded
programs. Schemmel et al. CAV 2020]

— SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et
al. CAV 2018]

— MOKLEE [Running symbolic execution forever. Busse et al. ISSTA 2020]
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KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:

1.

GO

Support for external calls (addresses valid in host process)
Cross-run determinism (multiple runs should behave the same)
Cross-path determinism (multiple paths should behave the same)
Spatially distanced allocations (misindexing an array should trap)
Temporally distanced allocations (use-after-free should trap)
Stability (minor changes should not snowball)
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General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls
— Object data is already state-dependent

« Categorize allocations to reduce snowball effect
— Multiple allocators, especially to disconnect stack and heap
— Binned allocations
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Memory Layout for KDALLOC

10 GiB virtual address space

Constants | 1 4 8 16 32 64 | 256 | 2048 WHO)E;

10 GiB virtual address space

Globals | 1 4 8 16 32 64 | 256 | 2048 WBLO)E;

128 GiB virtual address space

Stack 1 4 8 16 32 64 256 | 2048 [HOIE]

1024 GiB virtual address space

Heap 1 4 8 16 32 64 256 2048 FHHO)E
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Memory Consumption
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Solver Time
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MOKLEE: Fewer Diverging Locations

DFS RNxDCov
Suite MoKLEE KDALLOC MoKLEE KDALLOC
Coreutils 22 12 42 32
Findutils 1 0 1 1
Libspng 0 0 1 0
Binutils 0 0 0 0
Diffutils 0 0 0 0
Grep 0 0 1 1
Tepdump 0 0 0 0

EEEEEEEERRERRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSShShhh————m—
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MOKLEE: Fewer Divergences In memmove

char* s = (charx)dest; } else {
const charx p = (const charx)src; while (n) {
if (p >=s) { --n;
while (n) { s(n] =
*S++ = *kP++} }
--N; ¥
+ return dest;
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MOKLEE: Fewer Divergences In memmove

char* s = (charx)dest; } else {
const charx p = (const charx)src; while (n) {
if (p >=s) { --n;
while (n) { s[n] = plnl;
*S++ = *kP++} }
--N; ¥
} return dest;

« uClibc’s memmove is sensitive to memory layout
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Summary & Conclusion

 The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:
— Performance and memory consumption are not impacted negatively
— Use-after-free detection is improved (general benefit)
— Specific benefits for multiple DSE-based techniques

« KDALLOC is becoming part of mainline KLEE!

EEEEEEEERRERRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSShShhh————m—
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Guaranteed Use-After-Free Behavior

char *mallocfree() { int main(void) {
char *s = strdup("A"); char *s = mallocfree();
free(s); puts(s);
char *t = strdup("B"); return 0;
return s; +
¥

« KDALLOC guarantees detection when quarantine is enabled
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Query Structure with KDAlloc

(Extract w32 0
(Add w64 OxFFFFDDBCOOOOO0O0O0O (Select w64 C 0x0000000000000000 0x0000224400000000)))
4 Extract(Add): (Extract (Add x y)) — (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 OxFFFFDDBC00000000)
(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000224400000000)))
(Extract w32 0 OxFFFFDDBC0O0000000) — 0x00000000 and | Extract(Select)
(Add w32 0x00000000
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000224400000000)))
(Extract w32 0 0x0000000000000000) — 0x00000000
(Extract w32 0 0x0000224400000000) — 0x00000000
(Add w32 0x00000000 (Select w32 C 0x00000000 0x00000000))
(Select w32 C 0x00000000 0x00000000) — 0x00000000
(Add w32 0x00000000 0x00000000) = 0x00000000
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Query Structure without KDAIloc

(Extract w32 0
(Add w64 OxFFFFAAAAA7290C00 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))

I Extract(Add): (Extract (Add x y)) — (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 OxFFFFAAAAA7290C00)
(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))
(Extract w32 0 OxFFFFAAAAA7290C00) — 0xA7290C00 and | Extract(Select)
(Add w32 0xA7290C00
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000555558D6F400)))

(Extract w32 0 0x0000000000000000) — 0x00000000
(Extract w32 0 0x0000555558D6F400) — 0x58D6F400
(Add w32 0xA7290C00 (Select w32 C 0x00000000 0x58D6F400))
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