Imperial College «@) SOFTWARE RELIABILITY ‘ RWTH

London GROUP SY'S Euter i

A Deterministic Memory Allocator
for Dynamic Symbolic Execution

Daniel Schemmel, Julian Buning, Frank Busse, Martin Nowack, Cristian Cadar

Imperial College
London

Dynamic Symbolic Execution

int x = input();
if (x == 0) {
abort();
+ else {
return x;

Imperial College
London

Dynamic Symbolic Execution

state 1
int x = input(); (x=2a4L{})
if (x == 0) {

abort();
} else {
return x;

Imperial College
London

Dynamic Symbolic Execution

int x = input();

if (x == 0) {
abort(); state 1

1 else { ({x:=4},{1=0})
return x;

¥

Imperial College
London

Dynamic Symbolic Execution

int x = input();

if (x == 0) {
abort(); state 1
} else { (x=2}4L{1=0})
return x; state 1’
} ({x = 2}, {1 = 0})

Imperial College
London

Address Translation in KLEE

« What is the address of x?

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

FE FE FE FE

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

FE FE FE FE

OxDEADBEEF

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

00 00 00 00 FE FE FE FE

OxDEADBEEF

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

00 00 00 00 FE FE FE FE

OxDEADBEEF

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

state 1 00 00 00 00 FE FE FE FE

OxDEADBEEF
state 1’

state 2

Imperial College
London

Address Translation in KLEE

« What is the address of x?

KLEE Process

state 1 00 00 00 00 FE FE FE FE

OxDEADBEEF

state 1’ FF FF FF FF

state 2

Imperial College
London

Address Translation in KLEE

Used for external

« What is the address of x? function calls

KLEE Process

state 1 00 00 00 00 FE FE FE FE

OxDEADBEEF
state 1’ FF FF FF FF

state 2

Imperial College
London

Address Translation in KLEE

Used for external

« What is the address of x? function calls

KLEE Process

state 1 00 00 00 00 FE FE FE FE

OxDEADBEEF
state 1’ FF FF FF FF
OxFACEFEED

state 2 00 00 00 00 FE FE FE FE

Imperial College
London

The Need for Deterministic Memory Allocation

« For experiments to be repeatable, memory allocation must be repeatable

Imperial College
London

The Need for Deterministic Memory Allocation

« For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

Imperial College
London

The Need for Deterministic Memory Allocation

* For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

— POR-SE [Symbolic partial-order execution for testing multi-threaded
programs. Schemmel et al. CAV 2020]

Imperial College
London

The Need for Deterministic Memory Allocation

* For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

— POR-SE [Symbolic partial-order execution for testing multi-threaded
programs. Schemmel et al. CAV 2020]

— SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et
al. CAV 2018]

B
4

Imperial College
London

The Need for Deterministic Memory Allocation

* For experiments to be repeatable, memory allocation must be repeatable

« Advanced symbolic execution techniques benefit from or outright require
deterministic execution

— POR-SE [Symbolic partial-order execution for testing multi-threaded
programs. Schemmel et al. CAV 2020]

— SYMLIVE [Symbolic liveness analysis of real-world software. Schemmel et
al. CAV 2018]

— MOKLEE [Running symbolic execution forever. Busse et al. ISSTA 2020]

B
4

Imperial College
London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!

Imperial College
London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:

Imperial College
London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:
1. Support for external calls (addresses valid in host process)

Imperial College
London

KDALLOC

« An allocator specifically for dynamic symbolic execution can do better!
* Important properties:

1. Support for external calls (addresses valid in host process)

2. Cross-run determinism (multiple runs should behave the same)

Imperial College
London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:
1. Support for external calls (addresses valid in host process)
2. Cross-run determinism (multiple runs should behave the same)
3. Cross-path determinism (multiple paths should behave the same)

Imperial College
London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:
1. Support for external calls (addresses valid in host process)
2. Cross-run determinism (multiple runs should behave the same)
3. Cross-path determinism (multiple paths should behave the same)
4. Spatially distanced allocations (misindexing an array should trap)

Imperial College

London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:

1.

o s W

Support for external calls (addresses valid in host process)
Cross-run determinism (multiple runs should behave the same)
Cross-path determinism (multiple paths should behave the same)
Spatially distanced allocations (misindexing an array should trap)
Temporally distanced allocations (use-after-free should trap)

Imperial College

London

KDALLOC

* An allocator specifically for dynamic symbolic execution can do better!
* Important properties:

1.

GO

Support for external calls (addresses valid in host process)
Cross-run determinism (multiple runs should behave the same)
Cross-path determinism (multiple paths should behave the same)
Spatially distanced allocations (misindexing an array should trap)
Temporally distanced allocations (use-after-free should trap)
Stability (minor changes should not snowball)

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls
— Object data is already state-dependent

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls
— Object data is already state-dependent

« Categorize allocations to reduce snowball effect

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls
— Object data is already state-dependent

« Categorize allocations to reduce snowball effect
— Multiple allocators, especially to disconnect stack and heap

Imperial College
London

General Architecture

« mmap one large region and attach forkable metadata to the initial state
— This region is only used to provide addresses and for external calls
— Object data is already state-dependent

« Categorize allocations to reduce snowball effect
— Multiple allocators, especially to disconnect stack and heap
— Binned allocations

Imperial College
London

Memory Layout for KDALLOC

10 GiB virtual address space

Constants | 1 4 8 16 32 64 | 256 | 2048 WHO)E;

10 GiB virtual address space

Globals | 1 4 8 16 32 64 | 256 | 2048 WBLO)E;

128 GiB virtual address space

Stack 1 4 8 16 32 64 256 | 2048 [HOIE]

1024 GiB virtual address space

Heap 1 4 8 16 32 64 256 2048 FHHO)E

Imperial College
London

Slot Allocator for Sized Bins: Spatially Distanced
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st

Imperial College
London

Slot Allocator for Sized Bins: Spatially Distanced
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st

Imperial College
London

Slot Allocator for Sized Bins: Spatially Distanced
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st

Imperial College
London

Memory Consumption

= — asnlDecoding X
/M /M
= 9000 1 = 9000 1
N N
N N
/~ /~
5 5
= 6000 = 6000
DFS : RNDCoOV
(] (]
2 ks KX
f f nm-new tri
= 3000 A X = 3000 - Strip-new
& e;?pand & ‘
ol X A ranli objdump
X
OF o 01 ,‘?;?(

0 3000 6000 9000 0 3000 6000 9000
KDAlloc - MaxRSS (MB) KDAlloc - MaxRSS (MB)

Imperial College

London
Performance
8000 X/ta‘ll 2000 rantib_ostrip-new x
X .
w expand ﬁ(— ¥——objdump ¥
o ~ nm-new
2 6000 - @ 6000 -
5 g
i = ar
DFS £ 4000 < 4000 A RNDCOV
< ar X =
E 2 y
A 20001 £ 20001 x
X
0 A ge(0 i x

0 2000 4000 6000 8000 0 2000 4000 6000 8000
KDAlloc - Time (s) KDAlloc - Time (s)

EEEEEEEERRERRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSShShhh————m—
10

Imperial College
London

Solver Time

000 A X tail 80004 ranlib - strip-new
- X “w xx
- X : >§ nm-new
= 6000 - spandl 2 60001 objdump
) ¢)
> >
3 X 3
DFS 7 40004 . 4000 A RNDCoV
3 x/ar 3
= = X »
= 2000 - = 20004
& &
a X a z
s r
o 0| &
0 2000 4000 6000 8000 0 2000 4000 6000 8000
KDAlloc - Solver Time (s) KDAlloc - Solver Time (s)

11

Imperial College
London

MOKLEE: Fewer Diverging Locations

DFS RNxDCov
Suite MoKLEE KDALLOC MoKLEE KDALLOC
Coreutils 22 12 42 32
Findutils 1 0 1 1
Libspng 0 0 1 0
Binutils 0 0 0 0
Diffutils 0 0 0 0
Grep 0 0 1 1
Tepdump 0 0 0 0

EEEEEEEERRERRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSShShhh————m—
12

13

Imperial College
London

MOKLEE: Fewer Divergences In memmove

char* s = (charx)dest; } else {
const charx p = (const charx)src; while (n) {
if (p >=s) { --n;
while (n) { s(n] =
*S++ = *kP++} }
--N; ¥
+ return dest;

13

Imperial College
London

MOKLEE: Fewer Divergences In memmove

char* s = (charx)dest; } else {
const charx p = (const charx)src; while (n) {
if (p >=s) { --n;
while (n) { s(n] =
*S++ = *kP++} }
--N; ¥
+ return dest;

Imperial College
London

MOKLEE: Fewer Divergences In memmove

char* s = (charx)dest; } else {
const charx p = (const charx)src; while (n) {
if (p >=s) { --n;
while (n) { s[n] = plnl;
*S++ = *kP++} }
--N; ¥
} return dest;

« uClibc’s memmove is sensitive to memory layout

13

14

Imperial College
London

Summary & Conclusion

14

Imperial College
London

Summary & Conclusion

The memory allocator has significant impact on dynamic symbolic execution

14

Imperial College
London

Summary & Conclusion

The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:

14

Imperial College
London

Summary & Conclusion

The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:
— Performance and memory consumption are not impacted negatively

14

Imperial College
London

Summary & Conclusion

The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:
— Performance and memory consumption are not impacted negatively
— Use-after-free detection is improved (general benefit)

14

Imperial College
London

Summary & Conclusion

The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:
— Performance and memory consumption are not impacted negatively
— Use-after-free detection is improved (general benefit)
— Specific benefits for multiple DSE-based techniques

Imperial College
London

Summary & Conclusion

 The memory allocator has significant impact on dynamic symbolic execution

We implemented KDALLOC in KLEE and show:
— Performance and memory consumption are not impacted negatively
— Use-after-free detection is improved (general benefit)
— Specific benefits for multiple DSE-based techniques

« KDALLOC is becoming part of mainline KLEE!

EEEEEEEERRERRRRRRRRRRRRRRRRRRRRRRRSSSSSSSSSSShShhh————m—
14

Imperial College
London

Guaranteed Use-After-Free Behavior

char *mallocfree() { int main(void) {
char *s = strdup("A"); char *s = mallocfree();
free(s); puts(s);
char *t = strdup("B"); return 0;
return s; +
¥

« KDALLOC guarantees detection when quarantine is enabled

15

Imperial College
London

Query Structure with KDAlloc

(Extract w32 0
(Add w64 OxFFFFDDBCOOOOO0O0O0O (Select w64 C 0x0000000000000000 0x0000224400000000)))
4 Extract(Add): (Extract (Add x y)) — (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 OxFFFFDDBC00000000)
(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000224400000000)))
(Extract w32 0 OxFFFFDDBC0O0000000) — 0x00000000 and | Extract(Select)
(Add w32 0x00000000
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000224400000000)))
(Extract w32 0 0x0000000000000000) — 0x00000000
(Extract w32 0 0x0000224400000000) — 0x00000000
(Add w32 0x00000000 (Select w32 C 0x00000000 0x00000000))
(Select w32 C 0x00000000 0x00000000) — 0x00000000
(Add w32 0x00000000 0x00000000) = 0x00000000

16

Imperial College
London

Query Structure without KDAIloc

(Extract w32 0
(Add w64 OxFFFFAAAAA7290C00 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))

I Extract(Add): (Extract (Add x y)) — (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 OxFFFFAAAAA7290C00)
(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))
(Extract w32 0 OxFFFFAAAAA7290C00) — 0xA7290C00 and | Extract(Select)
(Add w32 0xA7290C00
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000555558D6F400)))

(Extract w32 0 0x0000000000000000) — 0x00000000
(Extract w32 0 0x0000555558D6F400) — 0x58D6F400
(Add w32 0xA7290C00 (Select w32 C 0x00000000 0x58D6F400))

17

