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Abstract—Symbolic execution has attracted significant atten-
tion in recent years, with applications in software testing, security,
networking and more. Symbolic execution tools, like CREST,
KLEE, FuzzBALL, and Symbolic PathFinder, have enabled
researchers and practitioners to experiment with new ideas,
scale the technique to larger applications and apply it to new
application domains. Therefore, the correctness of these tools is
of critical importance.

In this paper, we present our experience extending compiler
testing techniques to find errors in both the concrete and
symbolic execution components of symbolic execution engines.
The approach used relies on a novel way to create program
versions, in three different testing modes—concrete, single-path
and multi-path—each exercising different features of symbolic
execution engines. When combined with existing program gener-
ation techniques and appropriate oracles, this approach enables
differential testing within a single symbolic execution engine.

We have applied our approach to the KLEE, CREST and
FuzzBALL symbolic execution engines, where it has discovered
20 different bugs exposing a variety of important errors having to
do with the handling of structures, division, modulo, casting, vec-
tor instructions and more, as well as issues related to constraint
solving, compiler optimisations and test input replay.

I. INTRODUCTION

Symbolic execution has established itself as an effective
testing method, with many research groups working on im-
proving various aspects of it. The technique has also started
to be used in the industry, with several companies reporting
successful adoption [7]. Key to this progress has been the
availability of symbolic execution tools, which allows indus-
trial users to apply and extend the technique, and researchers
to experiment with new ideas. Notable examples include open-
source tools CREST [14], KLEE [4], FuzzBALL [24] and
Symbolic PathFinder [26], and closed-source tools PEX [31]
and SAGE [19].

Therefore, the quality of these symbolic execution tools
is essential for continuous progress in this area. In this
paper, we present our experience adapting techniques from
the compiler testing area [34]—which has seen tremendous
success in revealing important bugs in popular compilers—
for testing symbolic execution engines. More precisely, our
techniques are based on program generation and differential
testing, adapted to exercise several key inter-related aspects
of symbolic execution tools: execution fidelity, accuracy of
constraint solving, correct forking and faithful replay—that
is, whether the symbolic execution tool correctly follows the
paths it intends to follow, gathering precise constraints in the

process and whether the generated inputs execute the same
paths as the ones followed during symbolic execution.

Our method is effective for both symbolic execution tools
which keep multiple path prefixes in memory, as in EXE [6],
KLEE [4], Mayhem [9], Symbolic PathFinder [26] and
S2E [11], as well as for those which implement the concolic
variant of symbolic execution, in which paths are explored one
at a time, as in DART [18], CREST [14] and CUTE [29].

One of the key ingredients of modern symbolic execution
techniques is mixed concrete-symbolic execution [5], [18]. A
reliable tool has to correctly implement both execution types.
On the concrete side, symbolic execution engines either embed
an interpreter for the language they analyse: Java bytecode in
the case of Symbolic PathFinder, LLVM IR in the case of
KLEE, and x86 code in the case of SAGE, or modify and
instrument the code statically: e.g. both CREST and EXE first
transform the program using CIL [25], and instrument it at
that level. As we show in this paper, the execution fidelity
of the interpretation or instrumentation can be effectively
tested by adapting program generation and differential testing
techniques employed in compiler testing [34].

On the symbolic side, the accuracy of the constraints gath-
ered on each explored path is of critical importance if symbolic
execution tools are to avoid exploring infeasible paths (and
report spurious errors) and generate inputs that when run
natively follow the same path as during symbolic execution.
Our approach tests the symbolic execution component in two
ways. First, by constraining the initial inputs to follow a
single path. The key idea is simple, but effective: starting
from an automatically-generated or real program, we create
program versions which produce output for one path only (say
when the integer input x has value 10) and then we check
whether the symbolic execution correctly follows that path
and outputs the expected results. Second, by running small
programs symbolically, and verifying that the generated inputs
are consistent with the paths followed.

In both the concrete and symbolic cases, our approach is
based on differential testing, in which symbolic execution runs
are crosschecked against native runs. An effective crosscheck-
ing needs to employ effective and inexpensive oracles, that is,
oracles that find important bugs and do not add a significant
runtime cost. We use four different oracles: (1) crashes of
the symbolic execution tool, and whether the two executions
produce (2) identical outputs, (3) generate the same sequence
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Fig. 1. The main stages of our testing approach.

of function calls, and (4) achieve the same coverage. In both
the concrete and symbolic cases our approach also takes
advantage of advances in automatic program generation [34],
which allows us to quickly create small deterministic programs
without undefined and unspecified behaviour, and therefore
conduct a large number of experiments.

Finally, whenever a generated program finds a bug in the
symbolic execution tool, we use existing program reduction
techniques [27] which are combined with our oracles in order
to obtain a small program (with fewer than 30 lines of
code in our experiments) that forms an easy-to-understand,
reproducible bug report.

We applied our approach to the KLEE, CREST and
FuzzBALL symbolic execution engines, where it has found
several serious functionality bugs, most of which have already
been fixed or confirmed by the developers.

In summary, the main contributions of our paper are:
1) Our experience adapting compiler testing techniques to

the novel problem of finding errors in both the concrete
and symbolic execution components of symbolic execution
engines;

2) A novel way to create program versions, in three different
testing modes, which combined with existing program
generation techniques and appropriate oracles, enables dif-
ferential testing within a single symbolic execution engine;

3) A toolkit implementing our approach together with com-
prehensive case studies on three symbolic execution
engines—KLEE, CREST and FuzzBALL—implementing
different styles of symbolic execution (e.g. concolic vs.
keeping all paths in memory, interpretation vs. instrumen-
tation) and operating at different levels (source, LLVM
bitcode and binary). Our approach found 20 important bugs
in these engines.

The rest of the paper is structured as follows. §II gives an
overview of our technique, showing how we generate random

programs (§II-A) and create versions of these programs (§II-B)
to be crosschecked using four different oracles (§II-C), and
reduced to produce small bug reports (§II-D). §III presents our
case studies on the KLEE, CREST and FuzzBALL systems,
reporting the effectiveness and performance of our technique.
The lessons learned from the case studies are then presented
in §IV. Finally, §V discusses related work and §VI concludes.

II. TESTING APPROACH

The main stages of our testing approach are shown in
Figure 1. The inputs are a symbolic execution engine to be
tested and a configuration file specifying the parameters of the
testing process such as symbolic executor flags and timeouts.

In the first stage (Generate programs in the figure), we gen-
erate random, deterministic programs with the Csmith tool [34]
and instrument them to support our oracles. In the second stage
(Create & run versions), we create several different versions
of a given generated program: a native version, designed to
execute natively; single-path versions, designed to run a single
path when executed symbolically; and multi-path versions,
designed to run multiple paths when executed symbolically.
These different versions are run and crosschecked using our
four oracle types: crash detection, and output, function calls
and coverage comparison (Employ oracles). Any programs
exposing mismatches (as flagged by our oracles) between the
native and symbolic execution runs (Gather mismatches) are
then reduced using the C-Reduce tool [27] (Reduce programs)
and reported to developers.

While our testing approach is general, our infrastructure is
targeted toward symbolic execution of C code.

A. Generating Random Programs

The first step of our approach is to generate small programs
using the Csmith [34] tool used in compiler testing. Csmith is
a tool that can generate non-trivial C programs that leverage
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many features of the C language and which has been used
successfully to find many bugs in mature compilers [34].

Csmith generates programs in a top-down fashion. It starts
by creating a single function, which is called from main.
Csmith then randomly picks a structure from its grammar and
checks if it is appropriate for the current context (e.g. continue
can only appear in loops). Should the check fail, it makes
a different choice until it succeeds. If the chosen structure
needs a target (e.g. a variable to read or a function to call),
it randomly chooses between using an existing construct and
generating a new one. Care is taken not to generate constructs
with undefined or unspecified behaviour, e.g. by guarding
every division operation to ensure the divisor is not zero.

If the selected structure is a non-terminal, the process
repeats. Finally, Csmith performs several safety checks to
ensure there cannot be any undefined or unspecified behaviour.
If that fails, the changes are rolled back and the process starts
from the most recent successful stage.

The generated programs take no input, perform some de-
terministic computation and output the checksum of all global
variables, which gives an indication of the state of the program
upon termination. The length and complexity of the generated
code is highly configurable. With the options we used, the
generated programs are on average 1600 lines long, containing
about 10 functions and 100 global variables. The global
variables can have a wide range of types: signed and unsigned
integers of standard widths, arrays, randomly generated structs
and unions, pointers and nested pointers. The functions take
varying number of arguments of different types and return a
randomly-chosen type. Function bodies declare several local
variables and include if and for statements, which in turn
contain assignments to both local and global variables. The
expressions assigned are deep and nested, reading from and
writing to multiple global and local variables, performing
pointer and arithmetic operations and calling other functions.

There are several reasons for using Csmith-generated pro-
grams as opposed to using real software:

1) Csmith programs are valid C programs without undefined
or unspecified behaviour. This is important because the
compiler used to generate the native version of the program
and the engine used to symbolically execute the program
might take advantage of undefined or unspecified behaviour
in different ways, which might lead to spurious differences.

2) Csmith programs, by design, have a good coverage of
C language features, which a limited collection of real
programs might miss.

3) Most of the language features being used in Csmith
programs can be enabled or disabled via command-line
arguments. This is important because once the symbolic
execution tool is found to mishandle a certain feature,
we want to be able to continue testing without repeatedly
hitting that same bug.

4) Csmith programs are deterministic and the input and output
are easily identifiable: the input is represented by the set
of global variables in the program, and the output consists

of a checksum of the global variables, which is printed at
the end of the execution.

5) Unlike real programs, Csmith programs are relatively small
(or more exactly, Csmith can be configured to generate
small programs), which allows us to perform a large
number of runs.

Disadvantages of Csmith programs (and automatically gen-
erated programs more generally) are that they are artificial,
hard to read by humans, and not guaranteed to terminate.
We address the readability issue by automatically reducing the
size of the program (§II-D), and the non-termination issue by
using timeouts, as recommended by the Csmith authors [34]
(§III-A2).

B. Creating and Running Versions

For each generated program, we first create and run an
unmodified native binary version of the program. Then, for
each of our three testing modes, we create a modified version
of the program to be run by the symbolic execution engine
under test.

1) C-Mode: Concrete Mode: This mode is designed to test
the concrete execution of the symbolic execution engine. For
this mode, we run the program with the symbolic execution
engine without marking any variable as symbolic. For exam-
ple, we would compile the code to LLVM bitcode and then
run it with KLEE directly without any symbolic input.

The symbolic execution run is then validated against the
native one, using our oracles (§II-C). For example, the function
call chain oracle would check that the native and symbolic runs
generate the same sequence of function calls.

2) SP-Mode: Single-Path Mode: The aim of this mode is
to test the accuracy of the constraints gathered by symbolic
execution and its ability to correctly solve them. Essentially,
this mode is checking the symbolic execution of individual
paths in the program. For this mode, we modify the code to
mark all the integer global variables of the generated program
as symbolic and constraining them to have the unique value
assigned to them in the original program. This essentially
forces the symbolic execution engine to follow the same
execution path as in the native version, but also collect and
solve constraints on the way.

Constraining a variable to have a unique value needs to
be done in such a way that the symbolic execution engine
does not infer it has a unique value (and reverts to concrete
execution for that variable). In particular, assigning a symbolic
variable to have a constant value (e.g. x = 4) or comparing
it with a constant (e.g. if (x == 5) would typically make
the engine treat that variable as concrete on that path.

We used four different ways of constraining a symbolic
variable x to a given value v, which are listed in Table I.
For example, the second method adds the constraint that x is
less than or equal to v and greater than or equal to v, while
the fourth method adds the constraint that x is divisible by
all the prime divisors of v, is greater than 1 and less than or
equal to v. At the implementation level, for each integer global
variable initialization such as int x = 5, we add the following
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TABLE I
FOUR WAYS OF CONSTRAINING A VARIABLE x TO A CONSTANT VALUE v.

di IS A PRIME DIVISOR OF v.

Constrainer type Constraint

< ,> ¬(x < v) ∧ ¬(x > v)

≤, ≥ x ≤ v ∧ x ≥ v

range ¬(x ≤ v − 2) ∧ ¬(x ≥ v + 3)∧
¬(x = v − 1) ∧ ¬(x = v + 1) ∧ ¬(x = v + 2)

divisors ∧i¬(x mod di 6= 0) ∧ x > 1 ∧ x ≤ v

code at the start of main, should we for example, follow the
first constraining method:

make symbol ic (&x ) ;
i f ( x < 5) s i l e n t e x i t ( 0 ) ;
i f ( x > 5) s i l e n t e x i t ( 0 ) ;

In this code, the make_symbolic() function is
used to mark the given variable as symbolic, while the
silent_exit() function terminates execution without gen-
erating a test input on that path.

Therefore, after executing the code fragment above, the
symbolic execution engine will continue along a single path
with the path condition ¬(x < 5)∧¬(x > 5), which effectively
constrains x to value 5.

Once such a version of the program is constructed, its
execution can be validated using our oracles, as for the
previous C-Mode. Note that one oracle that is effective here,
as we show in the evaluation, is to check that the symbolic
execution engine executes a single path. However, we didn’t
add an explicit oracle for this, as other oracles, such as the
function call oracle, would almost always catch such a bug.

3) MP-Mode: Multi-Path Mode: While the prior mode
tested that the engine correctly performs symbolic execution
of a given path, this final mode checks that symbolic execution
explores multiple paths and generates inputs that exercise
exactly those paths.

For this mode, we simply mark all integer global variables
as symbolic, without constraining them to any value, and
let the symbolic execution engine explore multiple execution
paths. As a result, not all oracles are applicable to this mode. In
particular, we could not use the output oracle for non-concolic
execution engines, as the output could now be a function of
some symbolic variables. Besides the crash oracle, we decided
to solely use the function call chain oracle, which was the
easiest to adapt for this scenario. Our approach was to record
the sequence of function calls on each path explored during
symbolic execution, and then, for each path, to run natively
the generated test input and check whether it generates the
same function call sequence.

C. Oracles

We next discuss in detail the four oracles that we used in
our approach.

1) Executor Crash Oracle: The first basic oracle consists in
detecting generic errors during symbolic execution runs, such
as segmentation faults, assert violations and other abnormal
terminations.

2) Output Oracle: As discussed in §II-A, Csmith programs
are designed to have no undefined or unspecified behaviour
and produce deterministic output. More exactly, the programs
print at the end a single value, the checksum of all global
variables. For C-Mode, we simply compare the checksums
printed out by the native and symbolic execution runs.

For SP-Mode, we found that computing checksums for
symbolic variables is very expensive, resulting in many time-
consuming solver queries. Our solution was to exclude the
symbolic variables from the checksum computation, and in-
stead simply print out their individual values. For non-concolic
engines, we first ask the constraint solver for a solution (which
in this case is unique) before printing out the symbolic value.

3) Function Call Chain Oracle: The function call chain
oracle compares the sequence of function calls executed by the
native and symbolic execution versions. This oracle provides
the ability to catch some bugs where symbolic execution
follows the incorrect path, but without having any influence
on the output. For C-Mode and SP-Mode, this oracle checks
that the unique path followed by the symbolic execution
engine produces the same sequence of function calls as the
native execution. For MP-Mode, this oracle checks that when
natively replaying a generated input, the same function call
sequence is produced as in the corresponding path explored
during symbolic execution. Because some execution paths
may not be fully explored by non-concolic tools in MP-Mode
(due to timeouts), we actually check that the function call
chain generated during symbolic execution is a prefix of the
corresponding native function call chain.

4) Coverage Oracle: The coverage oracle was used in a
similar way as the function call chain oracle, to ensure that
the native and symbolic execution runs execute the same lines
of code, the same number of times. While we could have used
this oracle in MP-Mode as well, to check whether the natively
replayed execution covers the same lines of code as during
the corresponding path explored during symbolic execution,
we found this more difficult to implement efficiently.

One interesting challenge we faced while implementing
this oracle is that even when gathering coverage information
on a single execution path, the performance overhead was
extremely high. The problem was that the instrumentation
would generate select instructions to index into an in-
ternal buffer used to track coverage, which would make
that buffer symbolic, leading in turn to expensive constraint
solving queries. Once we diagnosed the issue, the solution
was simple: we modified the GCov instrumentation to generate
explicit branches instead of select instructions. This made
a huge impact on performance, making this oracle usable.
More generally, this is an issue that one has to be aware of
during symbolic execution when instrumenting programs with
coverage information.
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D. Reducing Bug-Inducing Programs

As indicated before, our Csmith programs are on average
1600 lines long and hard to read by human developers. The
code consists of huge nested expressions without any high-
level meaning, referring to mechanically-named variables. De-
bugging such programs would be highly difficult. Therefore,
for each generated program that exposes a bug, we used the
C-Reduce tool [27] to reduce it to a manageable size.

At a high-level, C-Reduce tries various source-level trans-
formations to reduce a C program (e.g. deleting a line) and
then uses an oracle (in the form of a shell script) to decide if
the transformation was successful. If so, C-reduce keeps the
reduced program and attempts to reduce it further, otherwise
it rolls back the change and tries other transformations. Inte-
grating C-Reduce in our bug-finding process was easy, as we
were able to reuse the same oracle as the one used to find the
bug in the first place. Some manual effort was necessary, but
it was modest overall, as we discuss in §IV. One challenge
is that unlike Csmith, C-Reduce can introduce undefined
behaviour. Luckily, compilers report most of those undefined
behaviours as warnings. We integrated these warnings into
our oracles, making them reject reduced programs that trigger
these specific warnings.1

III. CASE STUDIES

This section presents our experience applying our testing
approach to find bugs in the KLEE, CREST and FuzzBALL
symbolic execution engines. We provide an artifact with
additional details about our case studies at https://srg.doc.ic.
ac.uk/projects/symex-tester/.

A. KLEE

Our main case study uses KLEE, a popular symbolic
execution engine for C code that operates at the level of
LLVM bitcode. We chose KLEE for our main case study
because we are familiar with it, it is actively maintained,
highly-configurable and documented. As we discuss later, this
is important in order to be able to iteratively find new bugs.

We start by describing our experimental setup (§III-A1)
and methodology (§III-A2), and give an overview of our
experimental runs (§III-A3). We then present a summary of the
bugs found and discuss a few representative bugs (§III-A4).
We finally discuss our experience applying our approach to a
real application (§III-A5).

1) Experimental Setup: We used the KLEE commit
637e884bb for all our experiments. KLEE was built using
LLVM 3.4.2 and STP commit a74241d5. Initially, we used
version 1.6 of STP in a small number of our experiments. We
used Csmith 2.3.0, C-Reduce commit 49782e718, and Clang
3.4. The experiments were run in parallel [30] on an 8-core
3.5GHz Intel Xeon E3-1280 machine with 16GB of RAM.

To automate the experiments, we have built a toolset
consisting of a library and several scripts. It contains the

1We haven’t treated all warnings as errors, as Csmith programs already
generate some warnings during compilation.

implementation of the oracles, including the functions used
to constrain symbolic variables to a single value (see Table I)
and the necessary tools to deploy our technique, including
generating, compiling, running and reducing Csmith programs.

2) Methodology: We conducted our experiments in batches,
with essentially one batch for each bug found. In each batch,
we performed the following steps:
1) Configure the experiment (what kind of programs to gen-

erate, mode to use, options to pass to KLEE). We started
with the default configuration of Csmith and KLEE.

2) Run the experiment (typically overnight).
3) Reduce the first program exposing a bug, and sometimes

further manually simplify it slightly to make it more
readable.

4) Report the bug, attaching the reduced program.
5) Find a way to avoid the bug and reconfigure the experiment

accordingly.
The reason for the last step is that we observed that certain

bugs would reappear over and over again, making it difficult to
identify new bugs. Therefore, we adopted an iterative approach
in which once we identified a bug, we worked on either fixing
it (or incorporating the developers’ fix if available in a timely
manner), or more often reconfiguring our experiment to avoid
it. In the latter case, we either disabled some C features in
Csmith so that the bug would not be triggered (for example,
once a bug involving incorrect passing of structures by value
was found, we disabled passing structures as arguments) or
changed the KLEE options so that the affected code would not
run (for example, by disabling the counterexample cache [4]
which was involved in one of the bugs).

At the end of our experiments we were using the options
no-arg-structs, no-return-structs, no-arg-unions, no-divs and
no-const in Csmith, and check-overshift=false and use-cex-
cache=false in KLEE. In MP-Mode we also used the no-
checksum option in Csmith to disable the expensive checksum
computation, since the output oracle was not used.

We used either the -O0 or -O1 optimisation levels to compile
the generated programs, each with equal probability. We also
attempted to use higher optimisation levels, however every
Csmith-generated program compiled with optimisation level
-O2 or higher exposes the vector instruction unhandled bug
in KLEE (§III-A4), and therefore we only used these higher
optimisation levels for a small number of runs.

We used a 1s timeout for the native execution of Csmith
programs, as a longer runtime is a strong indication of non-
termination. We did not use a timeout in C-Mode for KLEE,
as we knew from the native run that the program should
terminate. The timeouts for KLEE in SP-Mode and MP-Mode
were set to 100s, as we accounted for constraint solving. In
MP-Mode, we also set the maximum number of forks (i.e.
paths to be explored) to 200.

3) Summary of Runs: In total we have generated and tested
almost 700,000 programs. A summary of all the runs can be
found in Table II. They are divided by the different modes they
used. We performed most runs, around 520,000, in C-Mode,

594



TABLE II
SUMMARY OF RUNS IN DIFFERENT MODES.

Mode # runs
Avg input

size (LOC)
Avg time per

run (s)
Native KLEE

C 520,930 1,622 0.0500 0.808
SP < ,> 42,162 1,642 0.0581 1.69
SP ≤ , ≥ 42,162 1,642 0.0581 1.69
SP range 42,162 1,642 0.0581 1.68
SP divisors 42,162 1,642 0.0581 2.56
SP < , >
& coverage 1,992 1,637 0.0726 91.8

MP 6,625 1,640 15.821 22.21
1 Combined runtime of all replayed test cases.

which as expected have the shortest average running time. We
conducted around 168,000 runs in SP-Mode, which on average
took twice as long as those in C-Mode. Finally, we performed
6,625 runs in MP-Mode, which were around 44 times more
expensive than those in C-Mode. Note that the average runtime
for native runs in MP-Mode includes replaying all generated
test cases. Overall, we spent around around 124 hours in C-
Mode, around 140 hours in SP-Mode, and around 70 hours in
MP-Mode. The technique found the bugs within the first 5000
runs of each batch. This means that we could have configured
the batches to run for only ~2.5h, but we found it convenient
to do longer overnight runs.

For SP-Mode, Table II also shows the number of runs
performed with each way of constraining inputs to a single
value. The runs involving inequalities and ranges took a similar
amount of time, while those involving divisors took longer,
as they involved more difficult constraints. We excluded the
expensive coverage oracle in all runs, except 1,992 SP-Mode
runs with <, > constraints, which took around 92 seconds
per run on average. We observed that using the coverage
oracle involves about ten times more instructions (as the
instrumentation also uses code from libc), and a significant
number of extra I/O operations, all of which contribute to the
significantly higher cost per run.

Finally, note that individual runs in SP-Mode and MP-
Mode varied considerably, depending on the constraint solving
queries generated in each run. For instance, SP-Mode runs
ranged between 0.01s to 99.6s (remember our SP-Mode time-
out was 100s). The reason some runs were very quick was
that only a small part of the code was executed at runtime.

4) Bugs Found: Table III summarises the 14 bugs we
have found using our approach. We reported all bugs to
the developers, except one which had already been reported
and another three which had already been fixed before we
managed to report them. We also reported a bug which we
later discovered to have been reported before. At the time of
writing, the bugs in bold had already been fixed.

As can be seen from Table III, we have found a variety of
bugs, involving the handling of structures, division, modulo,

1 union U0 {
2 signed f3 : 1 8 ;
3 } ;
4
5 s t a t i c union U0 g 988 = { 0UL } ;
6
7 i n t main ( i n t argc , char * argv [ ] ) {
8 g 988 . f3 = 534;
9 p r i n t f ( ” f3 %d \n ” , g 988 . f3 ) ;

10 return 0;
11 }

Listing 1. Reduced program exposing a bug where union fields are not
updated correctly. The native run correctly prints f3 534, while the KLEE
run prints f3 22.

1 #include <s t d i n t . h>
2 s t a t i c i n t 3 2 t g 976 ;
3 i n t 3 2 t func 46 ( ) {
4 p r i n t f ( ” f u n c t i o n c a l l \n ” ) ;
5 return 0;
6 }
7
8 void main ( ) {
9 klee make symbolic (&g 976 , sizeof g 976 ) ;

10 i n t 3 2 t * l 1985 = &g 976 ;
11 lb l 2550 :
12 func 46 ( ) ;
13 * l 1985 &= 2;
14 i f ( ( 3 ˆ * l 1985 ) / 1)
15 goto lb l 2550 ;
16 }

Listing 2. Program exposing division by 1 bug in KLEE.

casting, vector instructions and more, as well as issues having
to do with constraint solving, compiler optimisations, and test
input replay. These bugs were revealed by different modes and
oracles. We found 5 bugs in C-Mode, 6 bugs in SP-Mode and
5 bugs in MP-Mode, with 2 bugs found in both SP-Mode and
MP-Mode. In terms of oracles, the crash oracle found 5 bugs,
the output oracle 6 and the function call chain oracle 4, with
1 bug found by both the output and the function call chain
oracles.

As mentioned before, the size of the Csmith programs we
generated is on average 1600 lines of code. The last column of
Table III shows the size of the reduced programs. In all cases,
C-Reduce managed to reduce the programs substantially, to
fewer than 30 lines of code, with most at under 15 lines.

Below we give some examples of the bugs found by our
approach, including the reduced programs that were reported
to developers.

Some unions not retaining values. Listing 1 shows an
example of a bug found in C-Mode. The program initialises
a union containing a signed field of non-standard length, and
then writes 534 to that field and prints it. Running the program
natively correctly prints out 534, while running it with KLEE
prints out 22 (which represents the lower 9 bits of 534).

The root cause of this bug is an optimisation in KLEE which
uses faster functions for memory writes of sizes 1, 8, 16, 32
and 64 bits. The code contained a check which enabled the
optimisation only if the write in question was less than or
equal to 64 bits. If this was not the case, the slower general
approach was used. This incomplete check caused the program
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TABLE III
SUMMARY OF BUGS FOUND IN KLEE, INCLUDING THE MODE USED, THE ORACLE(S) THAT DETECTED THEM, AND THE SIZE OF THE REDUCED

PROGRAM USED IN THE BUG REPORT. ISSUES IN BOLD HAVE BEEN FIXED. MORE DETAILS ON THESE BUGS CAN BE FOUND AT
HTTPS://GITHUB.COM/KLEE/KLEE/ISSUES/<ISSUE#>.

Issue# Bug description Mode Oracle Reduced
size (LOC)

246 Some unions not retaining values C output 11
247 Incorrect by value structure passing C output 18
747 Invalid overshift error triggered by optimisation bug in LLVM C output 5
163 Vector instructions unhandled, caused by -O2 optimisations C output 6
268 Floating point exception C crash 14

266 Incorrect handling of division by 1 SP
function calls

& output 17

262 Execution forks unexpectedly SP function calls 14
261 Segmentation fault due to % operator SP crash 12
n/a2 Incorrect casting from signed to unsigned short SP output 27
308 Abnormal termination in STP solver SP, MP crash 10
n/a1 Assertion failure in STP solver 1.6 SP, MP crash –
264 Replaying read-only variables not handled MP crash 8
331 File system model and replay library interplay MP function calls 9
n/a2 Divergence b/w test generating path and test replay path MP function calls 21

1 Not explored further as the bug seems to have been fixed in the newest release of STP.
2 Fixed prior to reporting as the side effect of what looks to be an unrelated patch.

1 i n t a , b ;
2 s a f e l s h i f t f u n c i n t 1 6 t s u ( short p1 , p2 ) {
3 p1 < 0 | | p1 ? p1 : p2 ;
4 }
5
6 main ( ) {
7 klee make symbolic (&a , sizeof a ) ;
8 i f ( a > ( i n t ) 2453014441)
9 k l e e s i l e n t e x i t ( ) ;

10 i n t i = a % (1 % a ) ;
11 s a f e l s h i f t f u n c i n t 1 6 t s u ( i , i | | b ) ;
12 }

Listing 3. Program triggering a segmentation fault in KLEE due to incorrect
handling of some modulo expressions.

in Listing 1 (for which LLVM 3.4 generates a memory access
of size 24) to run the optimisation path, and thus behave
incorrectly. The bug has now been fixed.

Incorrect handling of division by 1. When executed
natively, the code in Listing 2 loops indefinitely. The if
statement at line 14 keeps evaluating to true and therefore the
execution jumps back to line 11. In KLEE, the if statement
evaluates to false, so KLEE terminates after a single iteration.
This bug was caught by both the output and function call chain
oracles. The bug was found in SP-Mode, but the reported
program does not constrain the symbolic variable to have a
single value, as we realised this is not needed to expose the
bug (so the automatically reduced program was several lines
longer). We also note that prior to running C-Reduce, the
Csmith program exposed the bug without containing an infinite
loop.

We initially managed to avoid this bug by disabling divi-
sion expression generation in Csmith, but the bug was later

1 s t a t i c i n t a ;
2 s t a t i c i n t b [ 1 ] = {1};
3 void fn1 ( short p1 ) { p1 − 0; }
4
5 s t a t i c long fn2 ( p1 ) {
6 return 2036854775807 / p1 ? 1 : 0 ;
7 }
8
9 i n t main ( ) {

10 long c ;
11 i n t *d = &a ;
12 c = fn2 ( b == d ) ;
13 fn1 ( c ) ;
14 }

Listing 4. Program that triggers a floating point exception in KLEE due to a
missing division-by-zero check.

debugged and fixed by the developers. The problem was that
division by a constant is optimised prior to invoking the
solver using multiplication and shift operations. However, the
optimisation is incorrect for constants 1 and -1. The fix was
to disable the optimisation for these special cases.

Segmentation fault due to % operator. The code in
Listing 3 causes a segmentation fault in KLEE. The bug was
found in SP-Mode and diagnosed by the developers to be
caused by an incorrect semantics assigned to the % operator
when negative numbers were used as divisors. The second part
of the code that constrained variable a to have a single value
was manually removed by us prior to reporting the bug, as it
was not needed to expose this bug.

Floating point exception. The code in Listing 4 triggers a
floating-point exception in KLEE. The bug, now fixed, is due
to a missing division-by-zero check when processing constant
expressions that are not folded in the LLVM bitcode.
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TABLE IV
FUNCTION CALL DIVERGENCE IN GREP.

Native fillbuf close stdout
KLEE fillbuf grepbuf EGexecute kwsexec close stdout

5) Grep case study: We have also considered applying the
techniques presented in this paper to real programs. For this
purpose, we used the popular UNIX utility grep which finds
lines of text matching a certain string pattern.

We found several mismatches in MP-Mode, which were
caught by the function call chain oracle. An example of the
difference between the function call chains executed on one
path explored by KLEE and the corresponding native run can
be seen in Table IV. We did not report this bug yet, as we
found it difficult to reduce (C-Reduce works on a single C
file) and debug (given the much larger size of grep). Overall,
this experience has reinforced our initial preference for using
generated programs, which present the advantages discussed
in §II-A. However, with more engineering work, our approach
could be applicable to real programs too.

B. CREST and FUZZBALL

To show the generality of our technique, we also ap-
plied it to two other symbolic execution engines. We chose
CREST [14] and FuzzBALL [24], because they are different
from KLEE in important ways: CREST is a concolic execution
tool [18], [29], a variant of symbolic execution which differs
significantly at the implementation level from the one used by
KLEE, while FuzzBALL is a symbolic execution for binary
code, which again results in significant differences in the way
the tool is implemented.

At the implementation level, to apply our framework to a
new tool, one obviously has to be aware of the way the code
is compiled and run with each new symbolic executor. Also,
one needs to know the API the tool uses to mark inputs as
symbolic. We have defined a general interface for creating and
constraining variables, which enables us to use the same trans-
formed program with multiple symbolic execution engines by
simply changing the library we link with appropriately.

CREST implements the concolic form of symbolic execu-
tion [18], [29], in which the code is executed on concrete
values and constraints are gathered on the side. To generate
a new path, one constraint is negated, a new concrete input
is generated and the process is repeated. Therefore, one
important difference with KLEE is that paths are explored
one at a time. A second important difference (but orthogonal
to the first) is that CREST instruments programs for symbolic
execution (using CIL) as opposed to interpreting them like
KLEE.

We faced several practical difficulties when applying our
approach to CREST. First, CREST is less feature-complete
than KLEE. For example, it does not support symbolic 64-bit
integers and its solver does not support some arithmetic opera-
tions such as modulo. However, we were able to work around

TABLE V
SUMMARY OF BUGS FOUND IN CREST AND FUZZBALL, INCLUDING
THE MODE USED AND THE ORACLE THAT DETECTED THEM. THE SIZES

OF THE REDUCED PROGRAMS VARY BETWEEN 8 AND 15 LINES OF
CODE. ISSUES IN BOLD HAVE BEEN FIXED.

Issue# Bug description Mode Oracle
CREST

github.com/jburnim/crest/issues/<Issue#>

7 Return struct errror C crash
6 Big integer in expression SP output
9 Non 32-bit wide bitfields SP output

FuzzBALL
github.com/bitblaze-fuzzball/fuzzball/issues/<Issue#>

21 STP div by zero failure1 SP crash
20 Strange term failure SP crash
22 Wrong behaviour SP output

1 Fixed in the upstream version of STP.

1 unsigned i n t a ;
2 i n t main ( ) {
3 CrestUInt (&a ) ;
4 p r i n t f ( ” a : %d\n ” ,a ) ;
5 i f ( a < 2294967295) {
6 e x i t ( 0 ) ;
7 }
8 }

Listing 5. CREST explores two branches in both of which a is smaller than
2294967295.

these limitations by slightly tweaking our instrumentation and
Csmith configuration.

Second and more importantly, CREST is not an actively
developed project, and the tool does not seem to expose
many options to enable or disable various sub-components,
like KLEE does. Therefore we found it difficult to find ways
around the bugs we discovered, in order to find new bugs.

In spite of these difficulties, our approach found three bugs
in CREST within the first 1000 runs or about 2 hours worth
of computation time. Further experiments were not run with
CREST, due to the pervasiveness of the bugs already found.
Note that CREST runs program paths significantly faster
than KLEE or FuzzBALL, which accounts for the short total
computation time.

A summary of the bugs found in CREST is shown in
Table V. The first bug is exposed in C-Mode by a program
with functions that return structs or unions. Here the CREST
compiler throws an error when given such programs as input.
Interestingly, KLEE had a similar problem with structs and
function calls.

The other two bugs are exposed in SP-Mode. For instance,
the code in Listing 5 makes CREST explore two branches,
with both having the same constraints. The bug was caused
by an incorrect use of the API of the constraint solver Yices,
and has now been fixed.

FuzzBALL is similar to KLEE in that it implements the non-
concolic style of symbolic execution, where execution starts
with unconstrained symbolic variables. On the other hand, like
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1 unsigned i n t g 893 = 124;
2 i n t safe sub ( long long p1 , i n t p2 ) {
3 return ( p1 ˆ ˜9223372036854775807LL ) − p2 < 0 ? 0 :

p2 ;
4 }
5 s t a t i c unsigned i n t magic symbols [ 1 ] = {0};
6
7 i n t main ( ) {
8 g 893 = * magic symbols ;
9 i f ( g 893 > 124) e x i t ( 0 ) ;

10 i f ( g 893 < 124) e x i t ( 0 ) ;
11 p r i n t f ( ”%u\n ” , safe sub (1UL ˆ g 893 , 1) ) ;
12 }

Listing 6. Reduced program for which the native run correctly prints 0, where
the FuzzBALL run prints 1.

CREST, FuzzBALL executes paths one at a time, keeping only
a lightweight execution tree in memory. Finally, like KLEE,
FuzzBALL interprets the code rather than instrument it for
symbolic execution, but does this at the binary rather than
LLVM bitcode level. These design decisions make FuzzBALL
an interesting complement to KLEE and CREST for our
technique.

The only engineering challenge we had to address to use
our technique on FuzzBALL was related to the fact that unlike
KLEE and CREST, FuzzBALL does not provide an API for
marking variables as symbolic. Instead, one has to specify on
the command line the address range(s) that the tool should
mark as symbolic (e.g. 16 bytes starting with 0xdeadbeef).
Therefore, the library we created for FuzzBALL defines a
large static array which we mark as symbolic from the
command line. At runtime, when a variable is supposed to
be marked as symbolic, we get unused bytes from the static
array and copy them to the variable to emulate the behaviour of
make_symbolic functions that symbolic execution engines
like CREST and KLEE provide.

With 2000 runs or about a day worth of computation time
our approach has found three bugs in FuzzBALL, all of
which have been fixed. Further experiments were not run with
FuzzBALL as the bugs have not been fixed promptly enough
to run more batches.

A summary of the bugs found in FuzzBALL is shown
in Table V. Like KLEE, FuzzBALL uses STP as its main
constraint solver, and we managed to trigger the same STP bug
while testing FuzzBALL. The crash bug that we found stems
from the fact that FuzzBALL is unable to distinguish between
pointers and integers well, due to the nature of machine code at
which it operates. However, it still finds this distinction useful
for various reasons, therefore it employs some heuristics to
classify words either into integers or pointers. The program we
generated causes this heuristic to fail. The developers added
further simplification rules and another command line option
to help mitigate this issue. The last bug causes FuzzBALL to
compute the wrong results and is illustrated in Listing 6. The
bug was debugged to a formula simplification rule that was
incorrect when signed overflow occurred. Developers removed
the rule to fix the bug.

IV. DISCUSSION AND LESSONS LEARNED

The approach of combining program generation with our
novel way of creating program versions in three different
modes to be crosschecked by appropriate oracles was suc-
cessful in finding important bugs in three different engines
operating in different ways (e.g. concolic variant vs. keeping
all paths in memory, interpretation vs. instrumentation, etc.)
and at different levels (source, LLVM bitcode and binary).

Adapting compiler testing techniques. Overall, we found
existing compiler techniques to be a great match for testing
symbolic execution engines. In many ways, both compilers and
program analysis techniques like symbolic execution take as
input programs, so program generation techniques for compiler
testing such as Csmith can be easily reused in this new context.

On the other hand, we found that the differential testing
part—where Csmith programs compiled by different compilers
are checked to ensure that they produce identical results—
is not easily translatable for checking symbolic executors.
The main problem is that different symbolic executors may
explore different paths in a given time budget, and also that
the same code may have different number of paths at different
levels (e.g., source, binary and LLVM) [2]. Therefore, instead
of performing differential testing between different symbolic
execution engines, we crosschecked native and symbolic ex-
ecution versions of the same program, with the symbolic
execution versions carefully constructed in three different
modes (§II-B). We believe this approach could be applicable
for testing other types of program analysers, but the way in
which different versions are generated would have to be guided
by the specifics of each program analysis.

Generated programs vs. real ones. We noticed some of the
bugs we found were also reported by users while running
real programs, but debugging large programs under symbolic
execution is often incredibly difficult due to the many different
variables involved. For instance, if symbolic execution fails to
cover a part of the program, this could be due to a bug in the
constraint solver, or a bug in the interpretation/instrumentation,
or a limitation of the search heuristic used. Instead, the
programs generated by Csmith and C-Reduce are small, and
the way we generate program versions for differential testing
makes it easy to debug the root cause of the problem—for
instance, program versions created in SP-Mode must follow a
single path when executed symbolically, and the path should
be the same as the one executed by running the program
natively on corresponding program inputs.

However, as we discuss in Section III-A5, our approach
could be used to test symbolic execution engines with real
programs too. While we found it difficult to do so with grep,
developers familiar with the program might be able to more
easily diagnose issues such as the function call divergence that
we report in Table IV.

Finally, the fact that some of the bugs we found were also
reported by users suggests that our approach finds bugs that
matter, while also having the advantage that the bug reports
are more easy to understand and debug.
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Oracles. Overall, the output oracle found almost half of the
bugs, followed closely by the crash oracle, and at some
distance by the function call oracle. As explained in the paper,
we ended up using the coverage oracle only for a small number
of runs—despite optimising its performance as described in
§II-C4, it is still very expensive, often involving more than
10x instructions when used (see §III-A3).

We also experimented with a performance oracle which
flagged generated programs on which the symbolic execution
engine spent disproportionately more time. For instance, the
520K C-Mode runs for KLEE have a mean performance slow-
down compared to native execution of 120x with a standard
deviation of 228. However, we had 28 programs on which
the slowdown was over 8000x. Such outliers might point to
program bugs, or at least highlight features which result in
high overhead in symbolic execution engines. However, after
reporting two such anomalies to KLEE developers without
receiving a response, we realised that such performance re-
ports are not too actionable, and decided not to include the
performance oracle in the experiments we describe.

False positives. By design, our approach has no false
positives—any program flagged by our oracles is a real bug.
One exception is the function call oracle, which assumes
that the order in which the arguments to a function are
evaluated—which could be functions themselves—is the same
across versions. Only the CREST experiments generated such
false positives, as CREST is based on the CIL compiler
infrastructure, which evaluates arguments in a different order
from the GCC compiler with which the native versions were
created. However, we found it easy to filter out such false
positives. Another solution would be to force Csmith not to
generate programs with function calls as function arguments.

Manual effort. Our approach involves manual work in only
two cases. First, to reconfigure the experiments before running
a new batch so that the previously found bugs are not triggered
again. Second, to configure C-Reduce to shorten the program
while preserving the essence of the bug (e.g. that it prints a
certain wrong value or stack trace). Fortunately, such manual
effort is only needed whenever we discover a bug, and we
found the overall effort to be relatively modest.

V. RELATED WORK

As far as we know, this is the first approach specifically
targeted toward testing symbolic execution tools, and the first
paper to present the experience of adapting compiler testing
techniques to check mature symbolic execution engines. More
generally however, the research community has started to
invest effort into ensuring the correctness and reliability of
program analysis tools [3].

Cuoq et. al.’s approach [15] is the closest related work,
in which Csmith-generated programs are used to evaluate
the Frama-C static analysis framework. Static analysis and
symbolic execution tools present different challenges in this
context, which require different version creation strategies and
different oracles.

Daniel et al.’s work on testing refactoring engines [16]
combines program generation, by providing developers with a
declarative way of constructing abstract syntax trees for Java
code using a bounded-exhaustive approach, with differential
testing between refactoring engines and appropriate oracles.

Roy and Cordy [28] evaluate clone detection tools using
program generation; their approach starts from real programs,
which are mutated to create code clones.

Wu et al. [33] present a system for checking pointer alias
implementations, which validates the results of pointer alias
analysis tools against the pointer values observed at runtime.
This is a form of differential testing, between dynamic and
static information.

Our approach takes advantage of the recent work on testing
compilers [22], [23], [34], especially the work of Regehr et
al. on program generation [34] and reduction [27]. Combined
with our technique for generating program variants in three
different modes and a set of appropriate oracles, we show
that these techniques are effective at finding bugs in symbolic
execution engines.

With respect to creating oracles based on differential testing,
Weyuker proposed the use of pseudo-oracles, in which one
creates an independently-written program that meets the same
specification as the program under testing [32]. A similar
approach is used for fault tolerance and reliability by the
N-version programming approach in which multiple versions
of the same program are run in parallel and their behaviour
compared at runtime [1], [12], [13], [21]. Other types of cross-
checking oracles exploit equivalences in the specification [10],
[17], [20] or redundancies in the code [8].

VI. CONCLUSION

Symbolic execution has seen significant interest in the last
few years, across a large number of computer science areas,
such as software engineering, systems and security, among
many others. As a result, the availability and correctness of
symbolic execution tools is of critical importance for both
researchers and practitioners. In this paper, we have de-
scribed our experience extending compiler testing techniques
to checking the correctness of symbolic execution tools. We
have evaluated our technique via case studies on the KLEE,
CREST and FuzzBALL symbolic execution engines, where it
has found subtle errors involving structures, division, modulo,
casting, vector instructions and more, as well as issues having
to do with constraint solving, compiler optimisations and test
input replay.
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