
Understanding API Usage and Testing:
An Empirical Study of C Libraries

Ahmed Zaki
ahmed.zaki@imperial.ac.uk
Imperial College London

London, UK

Cristian Cadar
c.cadar@imperial.ac.uk
Imperial College London

London, UK

Abstract
For library developers, understanding how their Application Pro-
gramming Interfaces (APIs) are used in the !eld can be invaluable.
Knowing how clients are using their APIs allows for data-driven
decisions on prioritising bug reports, feature requests, and testing
activities. For example, the priority of a bug report concerning an
API can be partly determined by how widely that API is used.

In this paper, we present an empirical study in which we anal-
yse API usage across 21 popular open-source C libraries, such as
O!"#SSL and SQL$%", with a combined total of 3,061 C/C++ clients.
We compare API usage by clients with how well library test suites
exercise the APIs to o"er actionable insights for library developers.

To our knowledge, this is the !rst study that compares API usage
and API testing at scale for the C/C++ ecosystem. Our study shows
that library developers do not prioritise their e"ort based on how
clients use their API, with popular APIs often poorly tested. For
example, in LMDB, a popular key-value store, 45% of the APIs
are used by clients but not tested by the library test suite. We
further show that client test suites can be leveraged to improve
library testing—e.g., improving coverage in LMDB by 14.7%—with
the important advantage that those tests are representative of how
the APIs are used in the !eld.

For our empirical study, we have developed L$&P’(&", a frame-
work that can be used to analyse a large corpus of clients for a given
library and produce various metrics useful to library developers.

ACM Reference Format:
Ahmed Zaki and Cristian Cadar. 2025. Understanding API Usage and Testing:
An Empirical Study of C Libraries. In Proceedings of The 29th International
Conference on Evaluation and Assessment in Software Engineering (EASE
2025). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction
Libraries provide reusable code for many applications. As a library
becomes more popular, the demands on library developers in terms
of !xing bugs, implementing new features, and testing the code in-
crease. Understanding how the library’s Application Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2025, Istanbul, Türkiye
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Interfaces (APIs) are used can provide invaluable insight for devel-
opers. In particular, library developers would be able to prioritise
their time and e"ort according to data retrieved from a represen-
tative sample of clients of the library. For instance, prioritising
bug reports and feature requests is a di#cult challenge that has
attracted signi!cant research [1, 11, 55, 63]. Without su#cient in-
formation about API usage, library developers can spend time and
e"ort maintaining features that are never used by clients.

To better understand how API usage information can help li-
brary developers, we have conducted a large-scale empirical study
of 21 popular open-source C libraries with a combined total of 3,061
C/C++ clients. Our empirical study is enabled by L$&P’(&", a frame-
work we have developed and made available as open source, to
analyse library usage information across a large number of clients.

Our study aims to understand how library APIs are used in the
!eld, howwell they are tested by the library test suites, and whether
there is a correlation between the two. It also aims to understand
whether the size, in terms of lines of code in an API has an impact on
API test coverage. Finally, we investigate whether client test suites
could be leveraged to improve testing of API implementations.

In our study, we de!ne an API of a library as an entry function
(exported symbol) of that library. We measure the size and coverage
of an API implementation by considering only the code within the
entry function itself, excluding any code in its callees. This design
choice is further discussed in §2.1. For succinctness, in the rest of
the paper, we use the terms API implementation, API size and API
coverage to refer, respectively, to the code implementation, number
of lines of code, and percentage of lines of code covered in the entry
function.

1.1 Research Questions
Our empirical study answers the following research questions:

RQ1: What is the distribution of library API uses across
clients? What percentage of a library’s APIs are used by clients
and how commonly do clients use the full set of APIs from that
library? Does API utilisation depend on the number of APIs o"ered
by the library? Is there a large di"erence in number of uses between
the most and least used APIs?

RQ2: Howwell are API implementations tested by the library
test suite? Does API implementation size matter? Is there a
correlation between the API implementation size and the API test
coverage achieved by the library test suite?

RQ3: Are APIs widely used by clients also well tested? Is there
a correlation between the number of clients using an API and the
API test coverage achieved by the library test suite?

https://orcid.org/0009-0008-7141-8865
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Ahmed Zaki and Cristian Cadar

RQ4: Can API coverage be improved by using the client test
suites? Is it possible to leverage the client test suites to better test
libraries? This would be particularly valuable as the client test suites
are more likely to re$ect how the libraries are used in practice.

1.2 Contributions
To our knowledge, this is the !rst large-scale empirical study for
C/C++ that tries to understand how library APIs are used in practice
and correlate that information with test coverage, based on a large
number of client applications. Our study includes 21 libraries and
3,061 clients hosted on the popular GitHub platform. Our major
!ndings can be summarised as follows:
(1) API testing compared to usage: Many libraries have APIs that

are used by a large number of clients, yet the testing of those
API implementations is poor. Conversely, there are many APIs
with few or no clients which are well-tested by the library
developers. This shows that library developers can bene!t from
metrics about API usage to prioritise their testing e"orts.

(2) API utilisation by clients: Most libraries have unused APIs, and
the percentage of unused APIs does not depend on the number
of APIs o"ered. This information can be used to improve API
design and retire unnecessary APIs.

(3) Improving API coverage using client test suites: The test suites of
library clients can be leveraged to improve API coverage. Such
tests have the further advantage of being representative of how
the APIs are used in the !eld. For example, we could improve
coverage in V(’&$) by 7.7% reaching 14 previously untested
APIs by leveraging the test suite of a single client.

To conduct our study, we have developed a fast, lightweight
framework for large-scale API usage analysis of C libraries and
C/C++ clients that produces helpful metrics for library developers.
We make our framework, L$&P’(&", and the results of our empirical
study available as an artifact [61].

2 LibProbe
The high-level architecture of L$&P’(&" is shown in Figure 1. The
inputs to L$&P’(&" are the libraries of interest and a dependency
database. The latter consists of (𝐿, 𝑀) pairs, signifying that client 𝐿
uses library𝑀, where𝐿 can itself be a library.We use the dependency
database provided by CCS*+##"’ [52], which includes G$%H,&
repositories for all entries. We discuss this database further in §3.1.

L$&P’(&" starts by processing each library to obtain its set of
APIs and the test coverage achieved on the code of each API by the
library’s test suite (§2.1). It then uses information from the depen-
dency database to download and prepare for analysis all the known
clients of the library (§2.2). L$&P’(&" then analyses each client to
extract all the uses of the library APIs (§2.3). Optionally, L$&P’(&"
determines the extra coverage achieved by the client in the library
under analysis. Finally, L$&P’(&" processes and summarises the
collected data in the form of JSON !les and graphs.

Scope and requirements. L$&P’(&" is meant to analyse popular
libraries, which may have dozens if not hundreds of C/C++ clients.
This imposes several constraints on its design.

First and foremost, we need to avoid the need to build each
client, which is both error-prone and expensive. This means we

cannot use compiler infrastructures to parse and analyse the code.
Instead, we rely on simple lexical analysis of the code to collect
usage information. This is one of the reasons for which we restrict
L$&P’(&" to C libraries, as a lexical search for C++ APIs is more
error-prone. However, L$&P’(&" can process both C and C++ clients.
We discuss this aspect in more detail in §2.3.

Second, we need a way to distinguish between client and li-
brary code in the common scenario in which the client codebase
incorporates the library code. We discuss this aspect in §2.2.

Third, we need to be able to build the library itself into a shared
library, as L$&P’(&" uses the exported symbols from shared library
archives as a step to determine the set of APIs of a library. As such,
header-only libraries cannot be processed by L$&P’(&".

2.1 Library Processing
The !rst stage of L$&P’(&" is to extract the set of exported symbols
from each shared library !le1, which is often a superset of the APIs
documented for that library. This is because some symbols are used
only for communication between di"erent modules of a library. For
instance, this was the case for NC,’)") [38] and M&"-TLS [33],
as documented in our conversations with their developers [32, 37].
In the case of M&"-TLS, the developers mentioned that functions
exported and not part of the API are not made private or have no
name mangling because they never got around to doing this in
their build scripts. To tackle this, we !lter out symbols that are not
part of the library API by excluding those that do not appear in
the headers of the library after installation. We do not solely rely
on the installed header !les since that would be less precise in the
presence of macros.

L$&P’(&" stores all APIs in a database to search for them later in
the clients. It will also record the size (in number of ELOC) and test
coverage (if provided) of each API implementation, by processing
all the coverage !les present in the library’s directory. In our study,
we measure test coverage in terms of line coverage, as reported
by GCov [12] and LCov [28]. While high line coverage alone is not
su#cient, it is nevertheless necessary; library test suites cannot !nd
issues in code that is not exercised. It is worth noting that we process
all .gcno !les which are generated when the library is compiled. This
can include test or other auxiliary !les so our coverage reporting
is an overapproximation of the actual library coverage. Generally,
we make a best e"ort to identify speci!c directories that are part
of the core library source code, otherwise, we process all compiled
!les and report the total coverage on those !les.

The entry functions of an API represent a critical interface be-
tween the library and its clients. Such functions often perform input
validation and high-level decisions concerning the functionality
o"ered by the API. Depending on how the code is structured, in
some cases the entry function may not re$ect the complexity of the
API implementation (because most of the core logic may be in the
callees). We explored measuring the full size of an API implemen-
tation by aggregating the number of ELOC of all callees used by
the API recursively. That approach su"ered from two fundamental
problems. First, callees can be shared between di"erent APIs, which
would make calculating the coverage for each API inaccurate. For
instance, consider an API which is never tested, but for which its

1We do so by running nm -CD library.so | grep ! T ! on the shared library.

Understanding API Usage and Testing in C Libraries EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Figure 1: L!"P#$"% architecture.

callees are exercised through other APIs; the API coverage in this
case would be considered non-zero, when in fact the API is not
exercised at all by the test suite. This problem extends recursively,
in the same way, to the callees themselves. Second, the size of the
API, in ELOC, would often be a large overestimate rather than an
accurate measurement, as only a small part of the code of the callees
might be used by the given API . In summary, we believe it is more
meaningful to restrict our code coverage and size measurement to
the API entry functions.

2.2 Client Preparation
Clients of a library sometimes include the library code in their own
codebase to make it easier to build the code, and/or to ensure the use
of speci!c library versions. To be able to get an accurate assessment
of API usage, we have to exclude client directories which contain
the library code. To do this, we use two approaches.

Our !rst approach handles Git submodules [13], when they are
present in the client’s codebase. We read the .gitsubmodules !le
and exclude all paths in it. This could include other dependencies,
which is !ne, as we are only interested in the client code itself.

Our second approach handles the case where the library code is
added as a sub-directory. We list all the directories in the library’s
repository which include source !les and collect all the !le names
in those directories recursively. Following that, we look for matches
in the client’s code. Given a client directory, we exclude it if 80%
of the !les in the client directory exist in the library directory (as
long as the latter has more than two !les). The reason for allowing
a partial match is that sometimes clients use an old version of a
library that may contain slightly di"erent !les. We arrived to the
threshold of 80% through several experiments across library-client
pairs to maximise accuracy.

Some libraries have a small number of source !les with distinc-
tive names, in which case we explicitly exclude them using their
name. The reason we do not do this for all libraries is that many
!les have generic names, with di"erent !les being given the same
name in the library and the client.

2.3 API Usage Collection
Our empirical study involves a large number of clients—CCS*+##"’
reports 3,198 di"erent clients for our libraries. Therefore, our API
usage collection method needs to be both fast and lightweight. In
particular, this excludes techniques which rely on building each

client codebase, such as those using a compiler framework like
C.+#/ [3]. In addition to taking considerable time, building such a
large number of clients would likely be infeasible given the variety
of build systems and dependencies involved.

Therefore, we set as a strict requirement to use a simple light-
weight analysis based on textual search. We considered two ap-
proaches: one based on the Grep [16] text search utility, and the
other based on theW"//.$ [58] semantic search tool.

Grep search. For each libraryAPI, we use amulti-step Grep pipeline
on all source !les in each client directory. We start by excluding
comments by running the following command on the client root
directory:

grep −rEIv \/\/[^\ n]∗|\/\∗.∗[\∗\/]?|^\ s \∗ −−include=∗. cc −−
include=∗. c −−include=∗. cpp −−include=∗. cxx −−include=∗.
hh −−include=∗.h −−include=∗.hpp −−include=∗hxx −−
exclude=<client_dir> ..

This command outputs text in source !les that excludes com-
ments and speci!c client directories that we identi!ed in §2.2. We
then search for uses of an API across this text, while excluding
string literal matches by the running the following two commands:

grep −E \b<api>\s ?\(
grep −Ev ".∗< api >.∗"

W%&&’! search.W"//.$ [58] is a semantic search tool for C and
C++ codebases, which is built on top of tree-sitter [53]. We
usedW"//.$ to search for each library API in each client source
!le, excluding again the directories that were identi!ed during the
client preparation stage.

We compared the Grep and W"//.$ approaches to each other
and to a tool built on top of C.+#/ .$&%((.$#/ [4]. As discussed
earlier, the latter would be too expensive to apply in practice but is
used as a comparison baseline. Our C.+#/ .$&%((.$#/-based tool,
further referred to as libtool, fetches all call expressions invoking
APIs from the library of interest.

We randomly selected two libraries, each with !ve clients, to
compare the three approaches. We selected: M&"-TLS [33] with
clients ,+*0" [54], *,’. [5],O!"#VPN [40], L$/1%%!- [27] and .$&2
C(AP [25]; and LMDB [29]with clientsK"’&"’() [23],R"*(’-"’ [43],
L$&E%P+# [26], 3+!(.$*4- [6] and OSME5!’")) [41].

We performed two types of analysis; one on identifying the
distinct APIs used, and the other on counting the number of uses

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Ahmed Zaki and Cristian Cadar

Table 1: Grep andW%&&’! precision and recall on clients of
M"%(TLS relative to libtool.

Distinct API Uses Total API Uses

Grep W"//.$ Grep W"//.$
Client P𝐿 / R𝐿 P𝐿 / R𝐿 P𝑀 / R𝑀 P𝑀 / R𝑀

,+*0" 0.94 / 1.00 0.92 / 0.97 0.95 / 0.99 0.90 / 0.97
*,’. 0.93 / 1.00 0.92 / 0.86 0.81 / 1.00 0.80 / 0.84
O!"#VPN 0.92 / 1.00 0.91 / 1.00 0.87 / 1.00 0.85 / 1.00
L$/1%%!- 0.63 / 0.98 0.64 / 1.00 0.57 / 0.92 0.58 / 1.00
.$&C(AP 0.98 / 1.00 0.92 / 0.95 0.96 / 1.00 0.89 / 0.90

Table 2: Grep andW%&&’! precision and recall on clients of
LMDB relative to libtool.

Distinct API Uses Total API Uses

Grep W"//.$ Grep W"//.$
Client P𝐿 / R𝐿 P𝐿 / R𝐿 P𝑀 / R𝑀 P𝑀 / R𝑀

K"’&"’() 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
R"*(’-"’ 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
L$&E%P+# 1.00 / 0.93 1.00 / 1.00 1.00 / 0.97 1.00 / 1.00
3+!(.$*4- 0.95 / 0.95 1.00 / 0.95 0.95 / 0.96 1.00 / 0.97
OSME5!’")) 1.00 / 1.00 1.00 / 0.92 0.81 / 0.89 0.76 / 0.86

for each API. The former is useful for determining how many of
the library’s APIs are being used by a client, while the latter for
understanding the popularity of each API. We calculate Precision
and Recall as

P𝐿/𝑀 =
Tp𝐿/𝑀

Tp𝐿/𝑀 + Fp𝐿/𝑀
R𝐿/𝑀 =

Tp𝐿/𝑀

Tp𝐿/𝑀 + Fn𝐿/𝑀

P𝐿 and R𝐿 represents precision and recall for distinct API iden-
ti!cation while P𝑀 and R𝑀 represents precision and recall for total
uses for each API identi!ed. We de!ne Tp𝐿 as the the number
of distinct APIs identi!ed by both the tool (Grep orW"//.$) and
libtool; and Fp𝐿 as the number of distinct APIs identi!ed by the
tool but not by libtool. Fn𝐿 is de!ned as the number of distinct APIs
identi!ed by libtool but not identi!ed by the tool. Tp𝑀 , Fp𝑀 , and Fn𝑀
are de!ned similarly for total API uses.

Tables 1 and 2 show the results. Grep generally performed bet-
ter thanW"//.$ for all clients of M&"-TLS except for L$/1%%!-,
where both tools had a low precision. For clients of LMDB, Table 2
shows that both tools were largely similar in performance except
for L$&E%P+# and OSME5!’")).

Looking closer at the low precision of both tools on L$/1%%!-we
found that Grep reported 37 false positive distinct APIs whileW"/2
/.$ reported 39. Almost all of the reported APIs were either inside
#ifdef directives that look for a certain M&"-TLS version/con!g-
uration or were in source !les that were not part of the build of the
client. Since libtool runs on the source after it gets pre-processed
and takes into consideration the build con!guration, some code
gets removed. As such, if an API is within an #ifdef that looks for
a certain library version or perhaps a debug build, libtool will miss
such uses. This was also re$ected when looking at the total uses

reported by both Grep andW"//.$. Grep reported 66 false positive
uses compared to libtool whileW"//.$ reported 72. The majority
of the false positives were due to either #ifdef directives looking
for a version of M&"-TLS or due to !les not included in the build.
It is possible to argue that these uses are not really false positives.
The uses are in client’s source !les but not included in the standard
build con!guration or only used when certain conditions are met.
This does still mean that under certain conditions such APIs could
be used by the client.

W"//.$ performed better than Grep on L$/1%%!-, L$&E%P+#
and 3+!(.$*4-. These di"erences were due to two main factors.
First, Grep discards all the lines with comments. Therefore, if a
comment is on the same line as a call, it incorrectly gets discarded.
While we could improve this aspect, it is di#cult to come up with
a general solution without parsing the code. The second source
of false negatives is when an API function is passed as a function
pointer. This is due to the regular expression we used to !nd API
uses, which only looks for call expressions; through experimenta-
tion, we found that removing this restriction resulted in a higher
number of false positives.

In the majority of cases, Grep performed better than W"//.$.
For instance, in .$&C(AP,W"//.$ was unable to identify the usage
of 4 distinct APIs (false negatives) while Grep reported all APIs
used by the libtool. Similarly, in term of total uses, W"//.$ missed
12 uses, which Grep successfully reported.

AnalysingW"//.$’s misses, we identi!ed two causes. A large
fraction of the misses come fromW"//.$’s failure to parse some
functions that use #ifdef directives heavily. Usage of #ifdef direc-
tives inside functions resulted in failures of tree-sitter, which
W"//.$ uses to generate an AST. Since Grep is lexical, it has no
issues identifying these uses. Another limitation of W"//.$ is with
respect to macros.W"//.$ is unable to process macro de!nitions,
and as suchmisses completely API uses that are wrapped in a macro.
We con!rmed this by raising an issue on the W"//.$ G$%H,&
project [59].

In summary, both W"//.$ and Grep have some limitations, but
overall we were more concerned aboutW"//.$’s inability to pro-
cess macros and #ifdef directives, which are common in C code.
Combined with the fact thatW"//.$ does not seem to be actively
developed anymore (which means that any issues encountered dur-
ing our study could be di#cult to resolve), we have decided to use
Grep in L$&P’(&".

3 Empirical Study
In this section, we present the results of our empirical study in-
volving 21 libraries and 3,061 clients. We start by presenting our
methodology in §3.1, after which we present the results for the !rst
research question in §3.2 and for the last three in §3.3.

3.1 Methodology

Dependency database. In our study, we make use of CCS*+#2
#"’ [52], which provides a database of dependencies for 24K C/C++
G$%H,& projects. In particular, each entry in the CCS*+##"’ data-
base consists of a G$%H,& repository and its dependencies.

Understanding API Usage and Testing in C Libraries EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Figure 2: Histogram of the number of libraries from CCS)*+,
+%# with at least 100 clients.

Library selection. From the total of 24K repositories, 229 were
not available anymore on G$%H,&, and thus we discarded them.
We then identi!ed the number of C repositories in the CCS*+##"’
dataset. Using each repository’s G$%H,& metadata, we identi!ed
10,291 repositories that had C as their main language. Out of these,
2,520 were dependencies of repositories in the CCS*+##"’ dataset.
In terms of number of clients, 2,067 (82%) of the dependencies had
less than 10 clients, 354 (14%) had between 10 to 49 clients, 54 (2%)
between 50 and 99 clients, and 45 (2%) at least 100 clients. In our
study, we are interested in popular libraries, so we have chosen to
focus on the 45 libraries with at least 100 clients.

Wemanually reviewed the 45 dependencies, and eliminated those
which are clearly not libraries, such as CM+6", and S4)%"0-. In
total, we identi!ed 8 such non-libraries, leaving us with 37 libraries
with at least 100 clients.

Figure 2 shows a histogram of the number of libraries with at
least 100 clients. To avoid long processing cycles in our study, we
select the 32 libraries that have between 100 and 550 clients, which
represent the majority of the libraries (the contiguous bars on the
left in Figure 2).

In order to identify the APIs available for use by clients, L$&P’(&"
requires each library repository to be built into a shared library and
installed. We manually attempted to build each of the 32 libraries.
However, we could not build 11 of them, as some libraries were
header-only, while others required speci!c system-level environ-
ment con!gurations, such as the Android SDK.

This process left us with 21 libraries to use for our study, which
are shown in Table 3, together with their size in ELOC, and the num-
ber of APIs they provide. Our selection includes libraries with di-
verse applications such as encryption (O!"#SSL [39]), databaseman-
agement (SQL$%" [48]), media (SDL [45]), compression (Z$! [65]),
rendering (F’""T4!" [10]) and general purpose libraries (GL$& [15]).
The ELOC measurements are provided by GCov and LCov, so they
re$ect the size of these libraries as compiled on our platform.

Client selection. For each of the 21 libraries, we select all their
available clients in the CCS*+##"’ database. Note that while the
libraries are all written in C, the clients can be either C or C++

Table 3: Libraries analysed, together with their size in ELOC,
number of APIs, number of clients reported by CCS)*++%#
and found by us, and some examples of clients.

Library ELOC APIs Clients Example clients

FF0!"/ 480,871 880 236 (120) RoboMaster, Telegram
FFTW3 59,846 66 151 (65) Atomify, Syn!g, Cava
F’""T4!" 82,996 219 355 (263) Ogre, OpenHarmony
GLEW 22,626 9 490 (387) openglText, imgui
GL$& 213,547 4,417 365 (302) Mutter, GTK
GSL 122,985 5,222 162 (119) OpenPilot, GDL
HDF5 344,814 983 215 (159) RDPFuzz, OpenCV
HIDAPI 1,351 24 100 (83) OpenSCAD, OpenFPGA
JEM+..(* 16,993 24 159 (144) SpiderMonkey
LMDB 4,469 56 131 (115) PowerDNS, Ca"e, Dali
L,+JIT 6,671 148 284 (256) Redis-storage
LZ4 5,934 100 498 (31) FreeBSD, NVBio
M&"-TLS 36,437 885 179 (134) OpenVPN3, Mqtt-c
NC,’)") 14,716 499 156 (136) WeeChat, Heimdal
O!"#SSL 461,116 5,282 444 (131) Telegram iOS, Moai
SDL 56,458 838 196 (70) AliOS, DreamShell
SQL$%" 211,058 269 428 (143) Gideros, OrangeC
V(’&$) 6,688 78 165 (130) Spring, Pindrop
55H+)1 2,328 49 343 (120) FreeBSD, Orbit
Z$! 4,909 37 109 (81) Assimp, Radare
Z)%+#-+’- 24,254 186 189 (72) Grok, Qemu

projects. Table 3 shows the number of clients downloaded and
processed for each library and, between parenthesis, the number
of clients where we have actually identi!ed API uses.

In total, CCS*+##"’ listed 3,198 unique repositories as clients of
our 21 libraries. As seen in Table 3, there is a substantial di"erence
between the number of clients reported by CCS*+##"’ and those
con!rmed by us for each library. We identi!ed two reasons for this
discrepancy. First, we noticed that some of the dependency informa-
tion in CCS*+##"’ is incorrect. This could be due to the evolution
of the clients over time since the publication of the CCS*+##"’
dataset. Second, we explicitly remove third-party dependencies
added via Git submodules, as we are interested only in how the
client itself uses libraries, while CCS*+##"’ would consider that
the client uses a library even when only one of its third-party de-
pendencies does.

Even after !ltering out these clients, we are left with 3,061 clients
across all libraries, of which 2,070 are unique.

Running L!"P#$"%. For each library and client, we run the
three L$&P’(&" stages discussed earlier: library preparation (§2.1),
client preparation (§2.2) and API usage collection (§2.3). Running
L$&P’(&" took approximately 96 hours on a machine with an AMD
EPYC 7302P 4 Core Processor at 3.6GHz, and 32GB RAM. The OS
was Ubuntu 22.04 LTS, and our compiler was GCC 11.4.0.

3.2 Usage Analysis
To address the !rst RQ, we study how APIs are used in practice, in
particular what percentage of a library’s APIs are used per client,

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Ahmed Zaki and Cristian Cadar

Figure 3: Percentage of library APIs used by each client.

Figure 4: Number of uses for each library API (log scale).

if API utilisation depends on the number of APIs o"ered by the
library, and if there is a large di"erence in number of uses between
the most and least used APIs.

RQ1: What is the distribution of library API uses across
clients?

Percentage of APIs used per client. Figure 3 shows the per-
centage of library APIs used by each client. A few libraries, like
55H+)1 [60], HIDAPI [21], V(’&$) [57], SQL$%" [48], GLEW [14]
and Z)%+#-+’- [66], had clients that used 100% of their APIs. All of
those libraries have a relatively small number of APIs, as shown in
Table 3, except SQL$%" which has 269 APIs. For most libraries, the
upper quartile usage is under 40% of the library API. Some libraries,
such as FFTW3 [7], GSL [17] and GL$& [15], do not have clients
that exceed 40% API utilisation.

Unused APIs. Table 4 shows the number of unused APIs and the
percentage of unused APIs for each library. Looking at libraries
with a large number of APIs, some have very high utilisation, such
as O!"#SSL, where only 5% of its 5,282 APIs are unused, while
others have low utilisation, such as HDF5, where 61% of its 983

Table 4: Unused APIs per library, sorted in descending order
of the percentage of unused APIs.

Library APIs
Total Unused Unused %

HDF5 983 603 61%
GSL 5,222 2,459 53%
SDL 838 432 52%
FFTW3 66 33 50%
Z$! 37 14 38%
GL$& 4,417 1,521 34%
FF0!"/ 880 221 25%
LMDB 56 10 18%
LZ4 100 17 17%
JEM+..(* 24 3 13%
M&"-TLS 885 96 11%
F’""T4!" 219 17 8%
O!"#SSL 5,282 274 5%
NC,’)") 499 12 2%
L,+JIT 148 2 1%
Z)%+#-+’- 186 1 1%
GLEW 9 0 0%
HIDAPI 24 0 0%
SQL$%" 269 0 0%
V(’&$) 78 0 0%
55H+)1 49 0 0%

APIs are unused. The same variation holds for libraries with a small
number of APIs: for instance, all of 55H+)1’s 49 APIs are used,
while 38% of Z$!’s 37 APIs are unused. Clearly, the number of APIs
available from a library does not correlate with usage. This can be
due to some libraries requiring clients to use many APIs to achieve
a single functionality. As can be seen, 16 of the 21 libraries have at
least one unused API, with the percentage of unused APIs reaching
61% for HDF5 [19] and 53% for GSL [17].

We took a closer look at the unused APIs across libraries and
found that they fell into three categories: APIs covering secondary
functionality, such as helper and debugging APIs; APIs with a
similar functionality to more popular APIs; and less-used modules.

Libraries like O!"#SSL, Z$!, LMDB and F’""T4!" have many
helper-type APIs that were unused. In the case of F’""T4!" and
LMDB, many seem to be getter- and setter-type functions such as
FT_Set_Log_Handler and mdb_env_set_!ags.

Some libraries have several APIs performing more or less the
same functionality as other more popular APIs. For example, users
of Z$! can use zip_close instead of the unused APIs zip_stream_close
and zip_cstream_close.

Libraries that o"er multiple modules see little usage of the APIs
in some of the modules; this is the case in O!"#SSL, FFTW3, HDF5
and M&"-TLS. For instance, in the case of FFTW3, the majority of
the unused APIs are related to the Guru module. This seems to o"er
a fragile API, which users avoid. According to the documentation,
“For those users who require the !exibility of the guru interface, it
is important that they pay special attention to the documentation
lest they shoot themselves in the foot” [8]. A simple internet search

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Ahmed Zaki and Cristian Cadar

Table 6: APIs used by clients but not tested, sorted in descend-
ing order by their percentage in each library.

Library Number of APIs Percentage

V(’&$) 51 65%
LMDB 25 45%
LZ4 45 45%
O!"#SSL 1560 29%
SDL 182 22%
FFTW3 14 21%
JEM+..(* 4 17%
55H+)1 8 16%
FF0!"/ 128 14%
M&"-TLS 87 10%
Z)%+#-+’- 16 8%
SQL$%" 19 7%
GL$& 335 7%
GSL 262 5%
HDF5 36 4%
Z$! 1 3%

We next contrast API implementation size with API test coverage
to understand whether there is any correlation between the two.
Table 5 shows the coverage of the APIs split by size. We grouped
APIs into two buckets: small APIs with up to 20 ELOC, and larger
APIs with over 20 ELOC. For example, SDL has 746 APIs that each
have up to 20 ELOC with a total coverage, across those APIs, of
42.3%; and 84 APIs which have each over 20 ELOC, with a total
coverage of 45.8%.

What is evident from Figure 5 and Table 5 is that many libraries
do not focus on API coverage, although ideally this should be close
to 100% as discussed in §1. We also counted the number of fully
covered APIs in each group as shown in Table 5: 48.8% of the 13,787
APIs with up to 20 ELOC have 100% coverage while only 13.4% are
fully covered in the greater than 20 ELOC bucket.

Our analysis suggests that many APIs are poorly tested—or
not tested at all—and that smaller APIs are easier to test.
Library developers should use coverage data to direct their
testing e"orts.

RQ3: Are APIs widely used by clients also well tested? An
important question is whether APIs which are widely used in the
!eld are also well-tested. Ideally, developers would spend more
resources writing tests for popular APIs, and fewer for those APIs
which are rarely used.

Figure 6 shows coverage of each API against usage in our data
set. The blue bars show the coverage of each API implementation,
with the bars sorted in ascending order. For each API, the !gure
also shows, as a red dot, the percentage of clients that use that API.
In almost all libraries, we can see a discrepancy between tested
APIs and usage by clients. Very few library, such as Z)%+#-+’- and
Z$!, have good overall testing of their APIs relative to usage. For
example,mdv_env_info, from LMDB, is used by 53% of the library’s

Table 7: API coverage improvement achieved by the clients’
test suites. For each library, we list the total extra coverage
added to the library, the number of newly covered APIs, and
the number of APIs where coverage was improved.

Library Client Extra APIs
TCov New Improved

LMDB K#(% DNS 14.7% 4 4
V(’&$) SFML 7.7% 14 1
FFTW3 CAVA 2% 2 0
SDL UFO A.$"# I#7+)$(# 0.3% 6 0

clients yet it is not tested by the library’s test suite. Similarly, ov_info,
from V(’&$), is used by 81% of the library’s clients, with no test
coverage.

Table 6 shows for each library the number of APIs used but not
tested by the library test suite, and their percentage from the total
number of library APIs. As can be seen, these percentages vary
from only 3% in Z$! to 65% in V(’&$), with a median of 15%.

In Figure 6 we can also see cases where the number of clients
is low yet the coverage is high. While this is not a problem per
se, the overall picture shows that developers could do a better job
prioritising their testing e"orts if they had information about how
their APIs are used in the !eld.

There is a clear discrepancy between API usage by clients
and API implementation test coverage. Library developers
should use API usage and coverage information to better
prioritise their e"orts and ensure the most used APIs are
well tested and optimised.

RQ4: Can API coverage be improved by using the client test
suites? RQ2 and RQ3 have shown that many APIs used by clients
are poorly tested, or not tested at all, by the library test suite. We
show that many clients already incorporate tests that exercise the
library APIs, and those tests could be used by library developers
to enhance testing of the library. In previous work, we explored
techniques for extracting these tests automatically from client code-
bases, such that they can be used in the library’s test suite without
any dependence on the client code or other libraries [62].

Since we are interested in evaluating whether we can improve
API coverage in libraries, we focused our attention on libraries that
would bene!t the most from this; libraries that have more than 20%
of their APIs used by clients but not tested by library test suites.
Looking at Table 6 we selected six libraries for our evaluation;
V(’&$), LMDB, LZ4, O!"#SSL, SDL, and FFTW3. For each of these
libraries, we identify the top ten clients and use them to check if
running their test suites would lead to an increase in API coverage.
We exclude any clients that are complex to build, such as FreeBSD,
could not be built on a Linux system, or do not have a test suite.
For each client we attempt to build and run the test suite to see if
there is an increase in API coverage in the target library. Once we
!nd a client that increases API coverage in the target library we
report it and stop.

Understanding API Usage and Testing in C Libraries EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

Figure 6: API coverage for each library. The blue bars represent the coverage for each API, while the red dots show the percentage
of clients using that API.

For LZ4 and O!"#SSL we were not able to improve coverage by
building and running the test suites of the top 10 clients. It is worth
noting that LZ4 had one of the lowest number of actual clients
using the library. Several of those clients were operating systems
or required speci!c hardware (such as recent GPUs), which made
it di#cult to build them.

We were able to increase API coverage in LMDB, V(’&$), FFTW3
and SDL. For LMDB we used K#(% DNS [24], a high-performance
authoritative-only DNS server; for V(’&$) we used SFML (Simple
and Fast MultiMedia Library) [47]; for FFTW3 we used CAVA [2], a
cross-platform audio visualizer; and for SDL we used a game called
UFO A.$"# I#7+)$(# [56].

Table 7 shows the improvements in terms of coverage. For each
library, we list the number of APIs which were newly covered as
a result of executing the client test suite and the number of APIs
where improved coverage was achieved.

For SDL, we cover six previously uncovered APIs: two become
fully covered (100%) while the other four achieve coverage of over
60%. For LMDB, we improve the testing of eight APIs, four of which
were previously uncovered. Two of the eight APIs become fully
covered, one of them uncovered before. For V(’&$), we improve
testing of !fteen APIs. Six of them become fully covered, all of them
uncovered before. For FFTW3, which has a non-deterministic test

suite, we ran CAVA’s test suite nine times and consistently cover
two new APIs that were previously uncovered: "tw_alloc_real and
"tw_alloc_complex.

For LMDB andV(’&$), 123 and 247 new lines were covered in the
API implementations of the libraries respectively. API line coverage
in V(’&$) went from 35.9% to 51.3% while in LMDB from 26.6% to
44.0%. For the other two benchmarks, the numbers of extra new
lines covered was less substantial.

In summary, we were able improve API coverage using
client test suites in 4 out of 6 libraries. This shows that
library developers can leverage clients that use their li-
braries to generate tests that re$ect how the library APIs
are used in practice.

3.4 Threats to Validity
Our study has several threats to validity.

To handle the large number of clients, we used textual search
for API use identi!cation (see §2.3), which may introduce some
false positives and negatives. We tried to minimise these issues
by conducting an initial study to choose the most precise scalable

EASE 2025, 17–20 June, 2025, Istanbul, Türkiye Ahmed Zaki and Cristian Cadar

method. Based on our observations, we believe such instances are
not signi!cant enough to invalidate the insights gathered from our
empirical study.

When we measure size and line coverage for the APIs, we restrict
ourmeasurement to the lines in the implementation of the API entry
functions—see §2.1 for an extended discussion.

The conclusions of our study might not generalise beyond the
libraries and clients examined. However, our 21 libraries are rep-
resentative of popular C libraries and the clients considered per
library are high enough in number and popularity to capture how
the libraries are used in practice.

As with any large-scale study, we cannot dismiss the possibil-
ity of implementation errors. To mitigate this threat, we double-
checked the numbers, and provide an artifact.

4 Related Work
To our knowledge, our study is the !rst that contrasts usage and
test coverage of C libraries in the C/C++ ecosystem. We study 21
libraries with the objective of o"ering valuable insights to library
developers, rather than to the users of the libraries.

There are several studies that look at API usage in the J+7+
ecosystem. Qiu et al. [42] performed an empirical study on API
usage for 5,000 open-source J+7+ projects. This study looked at
usage across core and third-party J+7+ libraries. It analysed 16,329
distinct third-party libraries and found that only 15 were used by
over 10% of the projects in their data set, while 265 were used by
1%, and 9,830 by a single project each. In our study, out of 2,520
dependencies, 82% had less than 10 users, while 14% had 10 to
49 users, and 2% had 50 to 99 users. As we showed in Figure 2,
only two dependencies had more than 1,000 users. The study also
investigated the usage of the J+7+ core library by measuring how
much of the library is used by projects in the corpus. The paper
reports that 41.2% of the core methods of J+7+ 8 were never used
across their client corpus. In our analysis, out of the 21 libraries, four
had 50% or more of their API unused. The study was conducted with
respect to packages and classes, which is not directly comparable
to API usage in C libraries.

Other studies analyse library usage from the clients’ perspec-
tive [20, 64]. Hejderup and Gousios [20] assess the e"ectiveness of
J+7+ project test suites in covering usages of third-party libraries.
The aim of the work is to assess how reliable test suites are as a
means to evaluate the compatibility of updated library versions.
The study did not explore if client test suites can be leveraged to im-
prove library coverage, instead it focused on determining whether
clients test all the APIs they use from direct dependencies.

Zhong and Mei [64] investigate how seven J+7+ applications
use internal and external APIs. The emphasis of the study is on
understanding how clients use APIs by understanding common
ways clients call di"erent types of elements of an API. The paper
studies how frequently APIs are used and !nd out that for most
libraries only a small portion of APIs are called. We perform our
study on 3,061 C/C++ clients and show in §3.2 that for most libraries
average client usage sits below 40%. But we also show that full
utilisation of the API is possible for some libraries.

Harrand et al. [18] analysed API usage for 94 J+7+ libraries across
829,410 clients. The objective of their research was to explore the

contradiction between Hyrum’s Law and !ndings that show that
for most libraries only a fraction of their APIs are used by clients.
Our evaluation shows that !ve libraries had full API usage. Our
!ndings align with those of Harrand et al. [18] in that in some cases,
with enough clients, all APIs of a library are used (Hyrum’s Law),
yet at the same time most APIs can be signi!cantly reduced and
still ful!l the needs of the majority of the clients.

Schittekat et al. [44] conducted an evaluation on four Python
packages across 14 clients to assess whether using the tests from
the clients can improve coverage in the libraries. They were able to
improve coverage in two out of the four packages. The improve-
ments range from a maximum of 28% increase to a minimum of
1%. The paper did not investigate whether new APIs were covered
from the Python packages.

Prior work has also analysed library usage with the objective of
detecting breaking changes [34–36]. Mujahid et al. [36] performed
an empirical study on 391,553 npm packages to evaluate if the
tests from client projects can be used to detect breaking changes in
packages. The paper found that client tests can cover up to 47% of
the code for the target dependency but did not look at improving
the coverage of the target dependencies, which is what we show is
possible in our study. McDonnell et al. [34] conduct an empirical
study to understand how clients using the Android SDK keep up
with changes in the API. The study looks at how APIs provided by
the Android SDK change over time and how clients catch up with
those changes. Similar to [36] and [35], the study is more concerned
with how changes in the library, as it evolves, impacts clients.

5 Conclusion
Libraries represent an indispensable component of the software
ecosystem. Unfortunately, library developers often have little knowl-
edge of how their code is used in practice. In this paper, we present
a large-scale empirical study in which we analyse API usage across
21 C libraries and 3,061 C/C++ clients. We developed L$&P’(&", a
lightweight analysis framework that can provide valuable insights
to library developers regarding how their APIs are used in the
!eld, to help them prioritise their e"orts in maintaining, improving,
and testing their libraries. Our study shows that library developers
do not prioritise their e"ort based on how clients use their APIs—
popular APIs are often poorly tested, with rarely-used ones well
tested instead. We further show that client test suites can be lever-
aged to improve library testing, with the important advantage that
those tests are representative of how the APIs are used in the !eld.

6 Acknowledgements
We thankMartin Nowack for his feedback on the text. This research
has received funding from from the Engineering and Physical Sci-
ences Research Council (EPSRC) via a PhD studentship, and from
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agree-
ment 819141).

References
[1] Mamdouh Alenezi and Shadi Banitaan. 2013. Bug reports prioritization: Which

features and classi!er to use?. In 2013 12th International Conference on Machine
Learning and Applications, Vol. 2. IEEE, 112–116.

Understanding API Usage and Testing in C Libraries EASE 2025, 17–20 June, 2025, Istanbul, Türkiye

[2] Cava [n. d.]. Cross-platform Audio Visualizer - Cava. https://github.com/karlstav/
cava.

[3] Clang [n. d.]. clang: a C language family frontend for LLVM. http://clang.llvm.
org/.

[4] Clang LibTooling 2023. LibTooling. https://clang.llvm.org/docs/LibTooling.html.
[5] curl [n. d.]. Curl - command line tool and library for transferring data with URLs.

https://curl.se.
[6] fapolicyd [n. d.]. File Access Policy Daemon. https://github.com/linux-

application-whitelisting/fapolicyd.
[7] FFTW Website [n. d.]. Fastest Fourier Transform in the West - FFTW. https:

//www."tw.org/.
[8] FFTW3 Guru Interface [n. d.]. FFTW3 Guru Interface. https://www."tw.org/doc/

Guru-Interface.html.
[9] FreeType Testing Issue [n. d.]. FreeType Testing Issue. https://gitlab.freedesktop.

org/freetype/freetype/-/issues/1272#note_2329977.
[10] FreeType Website [n. d.]. The FreeType Project. https://freetype.org/.
[11] Carlos Gavidia-Calderon, Federica Sarro, Mark Harman, and Earl T Barr. 2021.

The assessor’s dilemma: Improving bug repair via empirical game theory. ACM
Transactions on Software Engineering Methodology (TOSEM) 47, 10, Article 6 (Oct.
2021). https://doi.org/10.1109/TSE.2019.2944608

[12] gcov – A Test Coverage Program [n. d.]. gcov – A Test Coverage Program.
gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[13] Git Submodules [n. d.]. Git Submodules. https://git-scm.com/book/en/v2/Git-
Tools-Submodules.

[14] GLEW Website [n. d.]. OpenGL Extension Wrangler Library (GLEW). https:
//glew.sourceforge.net/.

[15] Glib Website [n. d.]. GLib. https://docs.gtk.org/glib/.
[16] Grep [n. d.]. Grep. https://www.gnu.org/software/grep/.
[17] GSLWebsite [n. d.]. GNU Scienti!c Library (GSL). https://www.gnu.org/software/

gsl/.
[18] Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bettega, Olivier

Barais, and Benoit Baudry. 2022. API beauty is in the eye of the clients: 2.2
million Maven dependencies reveal the spectrum of client–API usages. Journal
of Systems and Software 184 (2022), 111134.

[19] HDF5 Website [n. d.]. High-performance data management and storage suite -
HDF5. https://www.hdfgroup.org/solutions/hdf5/.

[20] Joseph Hejderup and Georgios Gousios. 2022. Can we trust tests to automate
dependency updates? a case study of java projects. Journal of Systems and
Software 183 (2022), 111097.

[21] HIDAPI Website [n. d.]. A simple cross-platform library for communicating with
HID devices - HIDAPI. https://libusb.info/hidapi/.

[22] JeMalloc Website [n. d.]. JeMalloc. https://jemalloc.net/.
[23] Kerberos V5 [n. d.]. Kerberos v5 - The Network Authentication Protocol. https:

//web.mit.edu/kerberos/.
[24] Knot [n. d.]. Knot DNS. https://www.knot-dns.cz/.
[25] libcoap [n. d.]. libcoap - C-Implementation of CoAP. https://libcoap.net/.
[26] libetpan [n. d.]. LibEtPan - Mail Framework for C Language. https://libcoap.net/.
[27] lighttpd1.4 [n. d.]. lighttpd1.4. https://www.lighttpd.net/.
[28] Linux Test Project. [n. d.]. LCOV. https://github.com/linux-test-project/lcov.
[29] LMDB Website [n. d.]. Lightining Memory-Mapped Database - LMDB. http:

//www.lmdb.tech/doc/.
[30] LuaJit PR [n. d.]. LuaJit PR. https://github.com/LuaJIT/LuaJIT/pull/54.
[31] LuaJIT Website [n. d.]. The LuaJIT Project - LuaJIT. https://luajit.org/.
[32] MbedTLS API discussion [n. d.]. MbedTLS API discussion. https:

//lists.trusted!rmware.org/archives/list/mbed-tls@lists.trusted!rmware.
org/thread/JVZWDVDMNIJXOTZA7FTYX2KBL65KDXL6/.

[33] MbedTLS Website [n. d.]. Mbed TLS. https://www.trusted!rmware.org/projects/
mbed-tls/.

[34] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An empirical study of
api stability and adoption in the android ecosystem. In Proc. of the IEEE Interna-
tional Conference on Software Maintenance (ICSM’13) (Eindhoven, The Nether-
lands).

[35] GianlucaMezzetti, Anders Møller, andMartin Toldam Torp. 2018. Type regression
testing to detect breaking changes in Node. js libraries. In Proc. of the 32nd
European Conference on Object-Oriented Programming (ECOOP’18) (Amsterdam,

The Netherlands). Schloss-Dagstuhl-Leibniz Zentrum für Informatik.
[36] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2020.

Using Others’ Tests to Identify Breaking Updates. In Proceedings of the 17th
international conference on mining software repositories. 466–476.

[37] NCurses API discussion [n. d.]. NCurses API discussion. https://lists.gnu.org/
archive/html/bug-ncurses/2024-04/msg00021.html.

[38] Ncurses Website [n. d.]. Ncurses (new curses). https://invisible-island.net/
ncurses/.

[39] OpenSSL Website [n. d.]. OpenSSL. https://openssl-library.org/.
[40] openvpn [n. d.]. OpenVPN - OpenVPN is an open source VPN daemon. https:

//openvpn.net/.
[41] OSMExpress [n. d.]. OSMExpress - Fast database !le format for OpenStreetMap.

https://github.com/bdon/OSMExpress.
[42] Dong Qiu, Bixin Li, and Hareton Leung. 2016. Understanding the API usage in

Java. Information and software technology 73 (2016), 81–100.
[43] recorder [n. d.]. Recorder - Store and access data published by OwnTracks apps.

https://owntracks.org/booklet/clients/recorder/.
[44] Igor Schittekat, Mehrdad Abdi, and Serge Demeyer. 2022. Can We Increase the

Test-coverage in Libraries using Dependent Projects’ Test-suites?. In Proceedings
of the 26th International Conference on Evaluation and Assessment in Software
Engineering. 294–298.

[45] SDL Website [n. d.]. Simple Directmedia Layer (SDL). https://www.libsdl.org/.
[46] Kostya Serebryany. 2017. OSS-Fuzz – Google’s continuous fuzzing service for

open source software. In Proc. of the 26th USENIX Security Symposium (USENIX
Security’16) (Vancouver, BC, Canada). Invited talk.

[47] SFML [n. d.]. Simple and Fast Multimedia Library - SFML. https://www.sfml-
dev.org/index.php.

[48] SQLite Website [n. d.]. SQLite. https://www.sqlite.org/.
[49] Stack Over$owGuru Interface Q1 [n. d.]. Stack Over$owGuru Interface Q1. https:

//stackover$ow.com/questions/39938409/how-to-use-"tw-guru-interface.
[50] Stack Over$ow Guru Interface Q2 [n. d.]. Stack Over$ow Guru Interface

Q2. https://stackover$ow.com/questions/58513592/confusion-about-"tw3-guru-
interface-3-simultaneous-complex-"ts.

[51] Stack Over$ow Guru Interface Q3 [n. d.]. Stack Over$ow Guru Interface Q3.
https://stackover$ow.com/questions/68198005/"tw-guru-interface.

[52] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-Party Library Dependency in
C/C++ Ecosystem. In Proc. of the 37th IEEE International Conference on Automated
Software Engineering, (ASE’22).

[53] Tree-sitter [n. d.]. Tree-sitter. https://tree-sitter.github.io/tree-sitter/.
[54] uacme [n. d.]. ACMEv2 client written in plain C with minimal dependencies.

https://github.com/ndilieto/uacme.
[55] Jamal Uddin, Rozaida Ghazali, Mustafa Mat Deris, Rashid Naseem, and Habib

Shah. 2017. A survey on bug prioritization. Arti#cial Intelligence Review 47 (2017),
145–180.

[56] UFOAI Website [n. d.]. UFO: Alien Invasion. https://ufoai.org/wiki/News.
[57] Vorbis Website [n. d.]. Ogg Vorbis. https://www.xiph.org/vorbis/.
[58] Weggli [n. d.]. Weggli. https://github.com/weggli-rs/weggli/.
[59] Weggli issue [n. d.]. Weggli issue. https://github.com/weggli-rs/weggli/issues/91.
[60] xxHash Website [n. d.]. xxHash - Extremely fast non-cryptographic hash algo-

rithm. https://xxhash.com/.
[61] Ahmed Zaki and Cristian Cadar. 2024. Artifact of Understanding API Usage

and Testing: An Empirical Study of C Libraries. https://doi.org/10.5281/zenodo.
13862392. Zenodo.

[62] Ahmed Zaki, Arindam Sharma, and Cristian Cadar. 2025. Generating and Con-
tributing Test Cases for C Libraries from Client Code: A Case Study. In Proc.
of the 32nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER’25) (Montreal, Canada).

[63] Min Zhang, Nathan Baddoo, Paul Wernick, and Tracy Hall. 2011. Prioritising
refactoring using code bad smells. In 2011 IEEE fourth international conference on
software testing, veri#cation and validation workshops. IEEE, 458–464.

[64] Hao Zhong and Hong Mei. 2017. An Empirical Study on API Usages. IEEE
Transactions on Software Engineering 45, 4 (2017), 319–334.

[65] Zip Website [n. d.]. Zip. https://github.com/kuba--/zip.
[66] Zstandard Website [n. d.]. Zstandard - Real-time data compression algorithm.

https://facebook.github.io/zstd/.

https://github.com/karlstav/cava
https://github.com/karlstav/cava
http://clang.llvm.org/
http://clang.llvm.org/
https://clang.llvm.org/docs/LibTooling.html
https://curl.se
https://github.com/linux-application-whitelisting/fapolicyd
https://github.com/linux-application-whitelisting/fapolicyd
https://www.fftw.org/
https://www.fftw.org/
https://www.fftw.org/doc/Guru-Interface.html
https://www.fftw.org/doc/Guru-Interface.html
https://gitlab.freedesktop.org/freetype/freetype/-/issues/1272#note_2329977
https://gitlab.freedesktop.org/freetype/freetype/-/issues/1272#note_2329977
https://freetype.org/
https://doi.org/10.1109/TSE.2019.2944608
gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://glew.sourceforge.net/
https://glew.sourceforge.net/
https://docs.gtk.org/glib/
https://www.gnu.org/software/grep/
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://www.hdfgroup.org/solutions/hdf5/
https://libusb.info/hidapi/
https://jemalloc.net/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
https://www.knot-dns.cz/
https://libcoap.net/
https://libcoap.net/
https://www.lighttpd.net/
https://github.com/linux-test-project/lcov
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/LuaJIT/LuaJIT/pull/54
https://luajit.org/
https://lists.trustedfirmware.org/archives/list/mbed-tls@lists.trustedfirmware.org/thread/JVZWDVDMNIJXOTZA7FTYX2KBL65KDXL6/
https://lists.trustedfirmware.org/archives/list/mbed-tls@lists.trustedfirmware.org/thread/JVZWDVDMNIJXOTZA7FTYX2KBL65KDXL6/
https://lists.trustedfirmware.org/archives/list/mbed-tls@lists.trustedfirmware.org/thread/JVZWDVDMNIJXOTZA7FTYX2KBL65KDXL6/
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/
https://lists.gnu.org/archive/html/bug-ncurses/2024-04/msg00021.html
https://lists.gnu.org/archive/html/bug-ncurses/2024-04/msg00021.html
https://invisible-island.net/ncurses/
https://invisible-island.net/ncurses/
https://openssl-library.org/
https://openvpn.net/
https://openvpn.net/
https://github.com/bdon/OSMExpress
https://owntracks.org/booklet/clients/recorder/
https://www.libsdl.org/
https://www.sfml-dev.org/index.php
https://www.sfml-dev.org/index.php
https://www.sqlite.org/
https://stackoverflow.com/questions/39938409/how-to-use-fftw-guru-interface
https://stackoverflow.com/questions/39938409/how-to-use-fftw-guru-interface
https://stackoverflow.com/questions/58513592/confusion-about-fftw3-guru-interface-3-simultaneous-complex-ffts
https://stackoverflow.com/questions/58513592/confusion-about-fftw3-guru-interface-3-simultaneous-complex-ffts
https://stackoverflow.com/questions/68198005/fftw-guru-interface
https://tree-sitter.github.io/tree-sitter/
https://github.com/ndilieto/uacme
https://ufoai.org/wiki/News
https://www.xiph.org/vorbis/
https://github.com/weggli-rs/weggli/
https://github.com/weggli-rs/weggli/issues/91
https://xxhash.com/
https://doi.org/10.5281/zenodo.13862392
https://doi.org/10.5281/zenodo.13862392
https://github.com/kuba--/zip
https://facebook.github.io/zstd/

	Abstract
	1 Introduction
	1.1 Research Questions
	1.2 Contributions

	2 LibProbe
	2.1 Library Processing
	2.2 Client Preparation
	2.3 API Usage Collection

	3 Empirical Study
	3.1 Methodology
	3.2 Usage Analysis
	3.3 API Coverage Analysis
	3.4 Threats to Validity

	4 Related Work
	5 Conclusion
	6 Acknowledgements
	References

