Understanding APl Usage and Testing:
An Empirical Study of C Libraries

Ahmed Zaki
ahmed.zaki@imperial.ac.uk
Imperial College London
London, UK

Abstract

For library developers, understanding how their Application Pro-
gramming Interfaces (APIs) are used in the field can be invaluable.
Knowing how clients are using their APIs allows for data-driven
decisions on prioritising bug reports, feature requests, and testing
activities. For example, the priority of a bug report concerning an
API can be partly determined by how widely that API is used.

In this paper, we present an empirical study in which we anal-
yse API usage across 21 popular open-source C libraries, such as
OreNSSL and SQLITE, with a combined total of 3,061 C/C++ clients.
We compare API usage by clients with how well library test suites
exercise the APIs to offer actionable insights for library developers.

To our knowledge, this is the first study that compares API usage
and API testing at scale for the C/C++ ecosystem. Our study shows
that library developers do not prioritise their effort based on how
clients use their API, with popular APIs often poorly tested. For
example, in LMDB, a popular key-value store, 45% of the APIs
are used by clients but not tested by the library test suite. We
further show that client test suites can be leveraged to improve
library testing—e.g., improving coverage in LMDB by 14.7%—with
the important advantage that those tests are representative of how
the APIs are used in the field.

For our empirical study, we have developed LIBPROBE, a frame-
work that can be used to analyse a large corpus of clients for a given
library and produce various metrics useful to library developers.

ACM Reference Format:

Ahmed Zaki and Cristian Cadar. 2025. Understanding API Usage and Testing:
An Empirical Study of C Libraries. In Proceedings of The 29th International
Conference on Evaluation and Assessment in Software Engineering (EASE
2025). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction

Libraries provide reusable code for many applications. As a library
becomes more popular, the demands on library developers in terms
of fixing bugs, implementing new features, and testing the code in-
crease. Understanding how the library’s Application Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2025, Istanbul, Tirkiye

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Cristian Cadar
c.cadar@imperial.ac.uk
Imperial College London
London, UK

Interfaces (APIs) are used can provide invaluable insight for devel-
opers. In particular, library developers would be able to prioritise
their time and effort according to data retrieved from a represen-
tative sample of clients of the library. For instance, prioritising
bug reports and feature requests is a difficult challenge that has
attracted significant research [1, 11, 55, 63]. Without sufficient in-
formation about API usage, library developers can spend time and
effort maintaining features that are never used by clients.

To better understand how API usage information can help li-
brary developers, we have conducted a large-scale empirical study
of 21 popular open-source C libraries with a combined total of 3,061
C/C++ clients. Our empirical study is enabled by LIBPROBE, a frame-
work we have developed and made available as open source, to
analyse library usage information across a large number of clients.

Our study aims to understand how library APIs are used in the
field, how well they are tested by the library test suites, and whether
there is a correlation between the two. It also aims to understand
whether the size, in terms of lines of code in an API has an impact on
API test coverage. Finally, we investigate whether client test suites
could be leveraged to improve testing of API implementations.

In our study, we define an API of a library as an entry function
(exported symbol) of that library. We measure the size and coverage
of an API implementation by considering only the code within the
entry function itself, excluding any code in its callees. This design
choice is further discussed in §2.1. For succinctness, in the rest of
the paper, we use the terms API implementation, API size and API
coverage to refer, respectively, to the code implementation, number
of lines of code, and percentage of lines of code covered in the entry
function.

1.1 Research Questions

Our empirical study answers the following research questions:

RQ1: What is the distribution of library API uses across
clients? What percentage of a library’s APIs are used by clients
and how commonly do clients use the full set of APIs from that
library? Does API utilisation depend on the number of APIs offered
by the library? Is there a large difference in number of uses between
the most and least used APIs?

RQ2: How well are API implementations tested by the library
test suite? Does API implementation size matter? Is there a
correlation between the API implementation size and the API test
coverage achieved by the library test suite?

RQ3: Are APIs widely used by clients also well tested? Is there
a correlation between the number of clients using an API and the
API test coverage achieved by the library test suite?

https://orcid.org/0009-0008-7141-8865
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

RQ4: Can API coverage be improved by using the client test
suites? Is it possible to leverage the client test suites to better test
libraries? This would be particularly valuable as the client test suites
are more likely to reflect how the libraries are used in practice.

1.2 Contributions

To our knowledge, this is the first large-scale empirical study for
C/C++ that tries to understand how library APIs are used in practice
and correlate that information with test coverage, based on a large
number of client applications. Our study includes 21 libraries and
3,061 clients hosted on the popular GitHub platform. Our major
findings can be summarised as follows:

(1) API testing compared to usage: Many libraries have APIs that
are used by a large number of clients, yet the testing of those
API implementations is poor. Conversely, there are many APIs
with few or no clients which are well-tested by the library
developers. This shows that library developers can benefit from
metrics about API usage to prioritise their testing efforts.

(2) API utilisation by clients: Most libraries have unused APIs, and
the percentage of unused APIs does not depend on the number
of APIs offered. This information can be used to improve API
design and retire unnecessary APIs.

(3) Improving API coverage using client test suites: The test suites of
library clients can be leveraged to improve API coverage. Such
tests have the further advantage of being representative of how
the APIs are used in the field. For example, we could improve
coverage in VORBIS by 7.7% reaching 14 previously untested
APIs by leveraging the test suite of a single client.

To conduct our study, we have developed a fast, lightweight
framework for large-scale API usage analysis of C libraries and
C/C++ clients that produces helpful metrics for library developers.
We make our framework, LIBPROBE, and the results of our empirical
study available as an artifact [61].

2 LibProbe

The high-level architecture of LIBPROBE is shown in Figure 1. The
inputs to LIBPROBE are the libraries of interest and a dependency
database. The latter consists of (C, L) pairs, signifying that client C
uses library L, where C can itself be a library. We use the dependency
database provided by CCScANNER [52], which includes GiTHUB
repositories for all entries. We discuss this database further in §3.1.

L1BPROBE starts by processing each library to obtain its set of
APIs and the test coverage achieved on the code of each API by the
library’s test suite (§2.1). It then uses information from the depen-
dency database to download and prepare for analysis all the known
clients of the library (§2.2). LIBPROBE then analyses each client to
extract all the uses of the library APIs (§2.3). Optionally, LIBPROBE
determines the extra coverage achieved by the client in the library
under analysis. Finally, LIBPROBE processes and summarises the
collected data in the form of JSON files and graphs.

Scope and requirements. LIBPROBE is meant to analyse popular
libraries, which may have dozens if not hundreds of C/C++ clients.
This imposes several constraints on its design.

First and foremost, we need to avoid the need to build each
client, which is both error-prone and expensive. This means we

Ahmed Zaki and Cristian Cadar

cannot use compiler infrastructures to parse and analyse the code.
Instead, we rely on simple lexical analysis of the code to collect
usage information. This is one of the reasons for which we restrict
LiBPROBE to C libraries, as a lexical search for C++ APIs is more
error-prone. However, LIBPROBE can process both C and C++ clients.
We discuss this aspect in more detail in §2.3.

Second, we need a way to distinguish between client and li-
brary code in the common scenario in which the client codebase
incorporates the library code. We discuss this aspect in §2.2.

Third, we need to be able to build the library itself into a shared
library, as LIBPROBE uses the exported symbols from shared library
archives as a step to determine the set of APIs of a library. As such,
header-only libraries cannot be processed by LIBPROBE.

2.1 Library Processing

The first stage of LIBPROBE is to extract the set of exported symbols
from each shared library file!, which is often a superset of the APIs
documented for that library. This is because some symbols are used
only for communication between different modules of a library. For
instance, this was the case for NCUursgs [38] and MBEDTLS [33],
as documented in our conversations with their developers [32, 37].
In the case of MBEDTLS, the developers mentioned that functions
exported and not part of the API are not made private or have no
name mangling because they never got around to doing this in
their build scripts. To tackle this, we filter out symbols that are not
part of the library API by excluding those that do not appear in
the headers of the library after installation. We do not solely rely
on the installed header files since that would be less precise in the
presence of macros.

L1BPROBE stores all APIs in a database to search for them later in
the clients. It will also record the size (in number of ELOC) and test
coverage (if provided) of each API implementation, by processing
all the coverage files present in the library’s directory. In our study,
we measure test coverage in terms of line coverage, as reported
by GCov [12] and LCov [28]. While high line coverage alone is not
sufficient, it is nevertheless necessary; library test suites cannot find
issues in code that is not exercised. It is worth noting that we process
all .gcno files which are generated when the library is compiled. This
can include test or other auxiliary files so our coverage reporting
is an overapproximation of the actual library coverage. Generally,
we make a best effort to identify specific directories that are part
of the core library source code, otherwise, we process all compiled
files and report the total coverage on those files.

The entry functions of an API represent a critical interface be-
tween the library and its clients. Such functions often perform input
validation and high-level decisions concerning the functionality
offered by the API. Depending on how the code is structured, in
some cases the entry function may not reflect the complexity of the
API implementation (because most of the core logic may be in the
callees). We explored measuring the full size of an API implemen-
tation by aggregating the number of ELOC of all callees used by
the API recursively. That approach suffered from two fundamental
problems. First, callees can be shared between different APIs, which
would make calculating the coverage for each API inaccurate. For
instance, consider an API which is never tested, but for which its

'We do so by running nm -CD library.so | grep " T " on the shared library.

Understanding APl Usage and Testing in C Libraries

Library Processing

H : [N\
Libraries API Coverage
Extraction Collection
L]

V -

-—— “ L

-—— ® —

-—— X —

Dependency =
DB & Configuration
[— v

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

Client Processing Analysis
APl Usage
Download Collection Usage
Analysis
o o o
Prepare
Coverage
Analysis

Figure 1: LIBPROBE architecture.

callees are exercised through other APIs; the API coverage in this
case would be considered non-zero, when in fact the API is not
exercised at all by the test suite. This problem extends recursively,
in the same way, to the callees themselves. Second, the size of the
API, in ELOC, would often be a large overestimate rather than an
accurate measurement, as only a small part of the code of the callees
might be used by the given API. In summary, we believe it is more
meaningful to restrict our code coverage and size measurement to
the API entry functions.

2.2 Client Preparation

Clients of a library sometimes include the library code in their own
codebase to make it easier to build the code, and/or to ensure the use
of specific library versions. To be able to get an accurate assessment
of API usage, we have to exclude client directories which contain
the library code. To do this, we use two approaches.

Our first approach handles Git submodules [13], when they are
present in the client’s codebase. We read the .gitsubmodules file
and exclude all paths in it. This could include other dependencies,
which is fine, as we are only interested in the client code itself.

Our second approach handles the case where the library code is
added as a sub-directory. We list all the directories in the library’s
repository which include source files and collect all the file names
in those directories recursively. Following that, we look for matches
in the client’s code. Given a client directory, we exclude it if 80%
of the files in the client directory exist in the library directory (as
long as the latter has more than two files). The reason for allowing
a partial match is that sometimes clients use an old version of a
library that may contain slightly different files. We arrived to the
threshold of 80% through several experiments across library-client
pairs to maximise accuracy.

Some libraries have a small number of source files with distinc-
tive names, in which case we explicitly exclude them using their
name. The reason we do not do this for all libraries is that many
files have generic names, with different files being given the same
name in the library and the client.

2.3 API Usage Collection

Our empirical study involves a large number of clients—CCSCANNER
reports 3,198 different clients for our libraries. Therefore, our API
usage collection method needs to be both fast and lightweight. In
particular, this excludes techniques which rely on building each

client codebase, such as those using a compiler framework like
CLANG [3]. In addition to taking considerable time, building such a
large number of clients would likely be infeasible given the variety
of build systems and dependencies involved.

Therefore, we set as a strict requirement to use a simple light-
weight analysis based on textual search. We considered two ap-
proaches: one based on the Grep [16] text search utility, and the
other based on the WEGGLI [58] semantic search tool.

Grep search. For each library API, we use a multi-step Grep pipeline
on all source files in each client directory. We start by excluding
comments by running the following command on the client root
directory:

grep —tElv. \W["\'n]+ [\WV]?|*\ s\« —-include=+.cc ——
include=+.c --include=+.cpp —-include=+.cxx —-include=x.
hh --include =+.h --include =« hpp --include=+hxx ——
exclude=<client_dir> ..

This command outputs text in source files that excludes com-
ments and specific client directories that we identified in §2.2. We
then search for uses of an API across this text, while excluding
string literal matches by the running the following two commands:

grep —E \b<api>\s ?\(
grep -Ev "«<api >."

WEGGLI search. WEGGLI [58] is a semantic search tool for C and
C++ codebases, which is built on top of tree-sitter [53]. We
used WEGGLI to search for each library API in each client source
file, excluding again the directories that were identified during the
client preparation stage.

We compared the Grep and WEGGLI approaches to each other
and to a tool built on top of CLANG LIBTOOLING [4]. As discussed
earlier, the latter would be too expensive to apply in practice but is
used as a comparison baseline. Our CLANG LIBTOOLING-based tool,
further referred to as libtool, fetches all call expressions invoking
APIs from the library of interest.

We randomly selected two libraries, each with five clients, to
compare the three approaches. We selected: MBEDTLS [33] with
clients UACME [54], curL [5], OPENVPN [40], LIGHTTPD [27] and LIB-
CoAP [25]; and LMDB [29] with clients KERBEROS [23], RECORDER [43],
LiBETPAN [26], FapoLICYD [6] and OSMEXPRESs [41].

We performed two types of analysis; one on identifying the
distinct APIs used, and the other on counting the number of uses

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

Table 1: Grep and WEGGLI precision and recall on clients of
MBEDTLS relative to libtool.

Distinct API Uses Total API Uses

Grep WEGGLI Grep WEGGLI
Client PD/RD PD/RD PT/RT PT/RT
UACME 0.94/1.00 0.92/0.97 | 0.95/0.99 0.90/0.97
CURL 0.93/1.00 0.92/0.86 | 0.81/1.00 0.80/0.84

OpeNVPN 0.92/1.00 0.91/1.00 | 0.87/1.00 0.85/1.00
LigurTPD 0.63/0.98 0.64/1.00 | 0.57/0.92 0.58/1.00
LIBCOAP 0.98/1.00 0.92/0.95 | 0.96/1.00 0.89/0.90

Table 2: Grep and WEGGLI precision and recall on clients of
LMDB relative to libtool.

Distinct API Uses Total API Uses

Grep WEGGLI Grep WEGGLI
Client Pp/ Rp Pp/ Rp Pr/ Rr P7/ Ry
KERBEROS 1.00/1.00 1.00/1.00 | 1.00/1.00 1.00/1.00
RECORDER 1.00/1.00 1.00/1.00 | 1.00/1.00 1.00/1.00
LiBETPAN 1.00/0.93 1.00/1.00 | 1.00/0.97 1.00/1.00
FAPOLICYD 0.95/0.95 1.00/0.95 | 0.95/0.96 1.00/0.97

OSMExPREss 1.00/1.00 1.00/0.92 | 0.81/0.89 0.76/0.86

for each API. The former is useful for determining how many of
the library’s APIs are being used by a client, while the latter for
understanding the popularity of each API. We calculate Precision
and Recall as

TpD/T _ TPD/T
b T = —— o
Tppr + Fppr Tppr + Fripr

Pp, and Rp, represents precision and recall for distinct API iden-
tification while Py and Ry represents precision and recall for total
uses for each API identified. We define Tpp, as the the number
of distinct APIs identified by both the tool (Grep or WEGGLI) and
libtool; and Fpp, as the number of distinct APIs identified by the
tool but not by libtool. Fny, is defined as the number of distinct APIs
identified by libtool but not identified by the tool. Tpy, Fpr, and Fny
are defined similarly for total API uses.

Tables 1 and 2 show the results. Grep generally performed bet-
ter than WEGGLI for all clients of MBEDTLS except for LIGHTTPD,
where both tools had a low precision. For clients of LMDB, Table 2
shows that both tools were largely similar in performance except
for LIBETPAN and OSMEXPRESS.

Looking closer at the low precision of both tools on LIGHTTPD we
found that Grep reported 37 false positive distinct APIs while WEG-
GL1 reported 39. Almost all of the reported APIs were either inside
#ifdef directives that look for a certain MBEDTLS version/config-
uration or were in source files that were not part of the build of the
client. Since libtool runs on the source after it gets pre-processed
and takes into consideration the build configuration, some code
gets removed. As such, if an API is within an #ifdef that looks for
a certain library version or perhaps a debug build, libtool will miss
such uses. This was also reflected when looking at the total uses

PD/T =

Ahmed Zaki and Cristian Cadar

reported by both Grep and WEGGLI. Grep reported 66 false positive
uses compared to libtool while WEGGLI reported 72. The majority
of the false positives were due to either #ifdef directives looking
for a version of MBEDTLS or due to files not included in the build.
It is possible to argue that these uses are not really false positives.
The uses are in client’s source files but not included in the standard
build configuration or only used when certain conditions are met.
This does still mean that under certain conditions such APIs could
be used by the client.

WEGGLI performed better than Grep on LiGHTTPD, LIBETPAN
and FAPoLICYD. These differences were due to two main factors.
First, Grep discards all the lines with comments. Therefore, if a
comment is on the same line as a call, it incorrectly gets discarded.
While we could improve this aspect, it is difficult to come up with
a general solution without parsing the code. The second source
of false negatives is when an API function is passed as a function
pointer. This is due to the regular expression we used to find API
uses, which only looks for call expressions; through experimenta-
tion, we found that removing this restriction resulted in a higher
number of false positives.

In the majority of cases, Grep performed better than WEGGLL
For instance, in LIBCOAP, WEGGLI was unable to identify the usage
of 4 distinct APIs (false negatives) while Grep reported all APIs
used by the libtool. Similarly, in term of total uses, WEGGLI missed
12 uses, which Grep successfully reported.

Analysing WEGGLI’s misses, we identified two causes. A large
fraction of the misses come from WEGGLI’s failure to parse some
functions that use #ifdef directives heavily. Usage of #ifdef direc-
tives inside functions resulted in failures of tree-sitter, which
WEGGLI uses to generate an AST. Since Grep is lexical, it has no
issues identifying these uses. Another limitation of WEGGLI is with
respect to macros. WEGGLI is unable to process macro definitions,
and as such misses completely API uses that are wrapped in a macro.
We confirmed this by raising an issue on the WeGGLr GitTHUB
project [59].

In summary, both WEGGLI and Grep have some limitations, but
overall we were more concerned about WEGGLYI's inability to pro-
cess macros and #ifdef directives, which are common in C code.
Combined with the fact that WEGGLI does not seem to be actively
developed anymore (which means that any issues encountered dur-
ing our study could be difficult to resolve), we have decided to use
Grep in LIBPROBE.

3 Empirical Study

In this section, we present the results of our empirical study in-
volving 21 libraries and 3,061 clients. We start by presenting our
methodology in §3.1, after which we present the results for the first
research question in §3.2 and for the last three in §3.3.

3.1 Methodology

Dependency database. In our study, we make use of CCScAN-
NER [52], which provides a database of dependencies for 24K C/C++
GITHUB projects. In particular, each entry in the CCSCANNER data-
base consists of a GITHUB repository and its dependencies.

Understanding APl Usage and Testing in C Libraries

10

Libraries
o

0 | 1

0 500 1000 1500 2000
Clients

Figure 2: Histogram of the number of libraries from CCScan-
NER with at least 100 clients.

Library selection. From the total of 24K repositories, 229 were
not available anymore on GiTHUB, and thus we discarded them.
We then identified the number of C repositories in the CCSCANNER
dataset. Using each repository’s GITHUB metadata, we identified
10,291 repositories that had C as their main language. Out of these,
2,520 were dependencies of repositories in the CCSCANNER dataset.
In terms of number of clients, 2,067 (82%) of the dependencies had
less than 10 clients, 354 (14%) had between 10 to 49 clients, 54 (2%)
between 50 and 99 clients, and 45 (2%) at least 100 clients. In our
study, we are interested in popular libraries, so we have chosen to
focus on the 45 libraries with at least 100 clients.

We manually reviewed the 45 dependencies, and eliminated those
which are clearly not libraries, such as CMAKE, and SySTEMD. In
total, we identified 8 such non-libraries, leaving us with 37 libraries
with at least 100 clients.

Figure 2 shows a histogram of the number of libraries with at
least 100 clients. To avoid long processing cycles in our study, we
select the 32 libraries that have between 100 and 550 clients, which
represent the majority of the libraries (the contiguous bars on the
left in Figure 2).

In order to identify the APIs available for use by clients, LIBPROBE
requires each library repository to be built into a shared library and
installed. We manually attempted to build each of the 32 libraries.
However, we could not build 11 of them, as some libraries were
header-only, while others required specific system-level environ-
ment configurations, such as the Android SDK.

This process left us with 21 libraries to use for our study, which
are shown in Table 3, together with their size in ELOC, and the num-
ber of APIs they provide. Our selection includes libraries with di-
verse applications such as encryption (OPENSSL [39]), database man-
agement (SQLITE [48]), media (SDL [45]), compression (Z1p [65]),
rendering (FREETYPE [10]) and general purpose libraries (GL1B [15]).
The ELOC measurements are provided by GCov and LCov, so they
reflect the size of these libraries as compiled on our platform.

Client selection. For each of the 21 libraries, we select all their
available clients in the CCScANNER database. Note that while the
libraries are all written in C, the clients can be either C or C++

EASE 2025, 17-20 June, 2025, Istanbul, Tiirkiye

Table 3: Libraries analysed, together with their size in ELOC,
number of APIs, number of clients reported by CCSCANNER
and found by us, and some examples of clients.

Library ELOC APIs Clients Example clients
FFMPEG 480,871 880 236 (120) RoboMaster, Telegram
FFTW3 59,846 66 151 (65) Atomify, Synfig, Cava
FREETYPE 82,996 219 355(263) Ogre, OpenHarmony
GLEW 22,626 9 490 (387) openglText, imgui
GL1B 213,547 4,417 365 (302) Mutter, GTK

GSL 122,985 5,222 162 (119) OpenPilot, GDL

HDF5 344,814 983 215(159) RDPFuzz, OpenCV
HIDAPI 1,351 24 100 (83) OpenSCAD, OpenFPGA
JEMALLOC 16,993 24 159 (144) SpiderMonkey

LMDB 4,469 56 131(115) PowerDNS, Caffe, Dali
Lua]IT 6,671 148 284 (256) Redis-storage

LZ4 5,934 100 498 (31) FreeBSD, NVBio
MBEDTLS 36,437 885 179 (134) OpenVPN3, Mqtt-c
NCURSES 14,716 499 156 (136) WeeChat, Heimdal
OPENSSL 461,116 5,282 444 (131) Telegram iOS, Moai

SDL 56,458 838 196 (70) AliOS, DreamShell
SQLITE 211,058 269 428 (143) Gideros, OrangeC

VORBIS 6,688 78 165(130) Spring, Pindrop
xxHASH 2,328 49 343 (120) FreeBSD, Orbit
Z1p 4,909 37 109 (81) Assimp, Radare
ZSTANDARD 24,254 186 189 (72) Grok, Qemu

projects. Table 3 shows the number of clients downloaded and
processed for each library and, between parenthesis, the number
of clients where we have actually identified API uses.

In total, CCScANNER listed 3,198 unique repositories as clients of
our 21 libraries. As seen in Table 3, there is a substantial difference
between the number of clients reported by CCSCANNER and those
confirmed by us for each library. We identified two reasons for this
discrepancy. First, we noticed that some of the dependency informa-
tion in CCSCANNER is incorrect. This could be due to the evolution
of the clients over time since the publication of the CCSCANNER
dataset. Second, we explicitly remove third-party dependencies
added via Git submodules, as we are interested only in how the
client itself uses libraries, while CCScANNER would consider that
the client uses a library even when only one of its third-party de-
pendencies does.

Even after filtering out these clients, we are left with 3,061 clients
across all libraries, of which 2,070 are unique.

Running LIBPROBE. For each library and client, we run the
three LIBPROBE stages discussed earlier: library preparation (§2.1),
client preparation (§2.2) and API usage collection (§2.3). Running
LiBPROBE took approximately 96 hours on a machine with an AMD
EPYC 7302P 4 Core Processor at 3.6GHz, and 32GB RAM. The OS
was Ubuntu 22.04 LTS, and our compiler was GCC 11.4.0.

3.2 Usage Analysis

To address the first RQ, we study how APIs are used in practice, in
particular what percentage of a library’s APIs are used per client,

EASE 2025, 17-20 June, 2025, Istanbul, Turkiye

100 .
. :
] . .
80 . .
8 : Pl
o H
g 60
© $ 0
wn .
=) H ¢
H
2 40|, . .
o H '
(s} =
H

1],

f%ééﬁi;i i,

O AN RO DLREN OO & O R RO
‘vé*‘zzv\‘v%voo\/\”\v@aoé@c)mQﬁ
Q L O F X VL O SY N8
SLL O TI VY L " 9
R ¢ $ &S A+4,‘°/\‘§

Libraries

Figure 3: Percentage of library APIs used by each client.

2 .
100k .
5 . : .
2. 1] : . >

10k §
50

IR .l : H

© 1000 l |!;] .

¥ s s i i

b 2| ¥ i ‘5i . i ;

D 100 B . b g !
5 i . PRI . 8
2 B M []
il BB R g!
5 s 2 H A
2le o e = & ¢ HER - I
1/ @ o = e ®» o - e o ® o .
COEC AL O D LR LG O LD RO
RS FF OO D VL LP L VR
< POPS O CRORISR IR AN IR QIS O
ANPANANO P SO Q" 2> [OFOIRS Q
&< R\ v O K 5> O S
R {5“ LS + 8

Libraries

Figure 4: Number of uses for each library API (log scale).

if API utilisation depends on the number of APIs offered by the
library, and if there is a large difference in number of uses between
the most and least used APIs.

RQ1: What is the distribution of library API uses across
clients?

Percentage of APIs used per client. Figure 3 shows the per-
centage of library APIs used by each client. A few libraries, like
xxHasH [60], HIDAPI [21], Vorsis [57], SQLITE [48], GLEW [14]
and ZSTANDARD [66], had clients that used 100% of their APIs. All of
those libraries have a relatively small number of APIs, as shown in
Table 3, except SQLITE which has 269 APIs. For most libraries, the
upper quartile usage is under 40% of the library API. Some libraries,
such as FFTW3 [7], GSL [17] and GLi1B [15], do not have clients
that exceed 40% API utilisation.

Unused APIs. Table 4 shows the number of unused APIs and the
percentage of unused APIs for each library. Looking at libraries
with a large number of APIs, some have very high utilisation, such
as OPENSSL, where only 5% of its 5,282 APIs are unused, while
others have low utilisation, such as HDF5, where 61% of its 983

Ahmed Zaki and Cristian Cadar

Table 4: Unused APIs per library, sorted in descending order
of the percentage of unused APIs.

Library APIs

Total Unused Unused %
HDF5 983 603 61%
GSL 5,222 2,459 53%
SDL 838 432 52%
FFTW3 66 33 50%
Z1ip 37 14 38%
GL1B 4,417 1,521 34%
FFMPEG 880 221 25%
LMDB 56 10 18%
LZ4 100 17 17%
JEMALLOC 24 3 13%
MBEDTLS 885 96 11%
FREeTYPE 219 17 8%
OPENSSL 5,282 274 5%
NCURSES 499 12 2%
Lua]IT 148 2 1%
ZSTANDARD 186 1 1%
GLEW 9 0 0%
HIDAPI 24 0 0%
SQLITE 269 0 0%
VORBIS 78 0 0%
xxHAsH 49 0 0%

APIs are unused. The same variation holds for libraries with a small
number of APIs: for instance, all of xxHasu’s 49 APIs are used,
while 38% of Zip’s 37 APIs are unused. Clearly, the number of APIs
available from a library does not correlate with usage. This can be
due to some libraries requiring clients to use many APIs to achieve
a single functionality. As can be seen, 16 of the 21 libraries have at
least one unused API, with the percentage of unused APIs reaching
61% for HDF5 [19] and 53% for GSL [17].

We took a closer look at the unused APIs across libraries and
found that they fell into three categories: APIs covering secondary
functionality, such as helper and debugging APIs; APIs with a
similar functionality to more popular APIs; and less-used modules.

Libraries like OPENSSL, Z1p, LMDB and FREETYPE have many
helper-type APIs that were unused. In the case of FREETYPE and
LMDB, many seem to be getter- and setter-type functions such a