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1. Introduction
Our society runs on code, with all aspects of life

affected by software. Scientific discovery is equally
reliant on software, with all branches of science de-
pending on software to collect and process data,
build computational models, run simulations, and
validate scientific hypotheses. Errors in such soft-
ware can have a significant impact, ranging from re-
tractions from scientific journals [1] to the public los-
ing trust in scientific models (e.g., the climate skep-
ticism campaign after the ClimateGate incident [2])
to flight disasters [3, 4].
The science of program verification has existed

for almost as long as the field of computing [5], strad-
dling both computer science and mathematics. Pro-
gram verification involves proving facts about the
program, in particular that the code correctly fol-
lows its specification. For program verification to be
possible, a formal mathematical specification that
describes the expected behaviour of the program
must be provided.1
A common and well-known program verification

approach is interactive deductive verification. In this
approach, specification and code are used to cre-
ate a set of mathematical proof obligations, which
are then discharged to an interactive theorem prover.
In recent years, several influential interactive theo-
rem provers (also called proof assistants) have been
created, such as Coq [6], Isabelle [7] and Vam-
pire [8]. These systems candevelop formal proofs via
computer-human collaboration, where some steps
are provided by the computer, and some by the hu-
man. Typically, the human guides the computer to-
ward the proof whenever it cannot make automatic
progress by itself.
Program verification has seen tremendous suc-

cess in the last couple of decades, with several
machine-verified software systems being created,
such as the CompCert verified compiler [9] and the
seL4 verified microkernel [10]. However, such ver-
ified software is extremely expensive to build, with
manually-written specifications often significantly
larger than the code itself, andwith the overall verifi-
cation process often requiring years of PhD-level ex-
pertise. For example, the seL4 developers estimate
that it took over 200,000 lines of Isabelle proof script
and 20 person-years of effort to build the initial ver-
sion of seL4 [11].

1Some implicit specifications, such as the lack of memory er-
rors, can be used, but the ambition of program verification is to
prove full functional correctness.

2. AI for Program Verification
Recent developments in generative AI (GenAI)

have opened the possibility to revolutionise the scal-
ability of the program verification process. In this
extended abstract, we discuss two promising inter-
connected directionswhichwe have recently started
to investigate: AI-driven specification inference and
AI-driven proof search.

2.1 AI-driven Specification Inference
One of the most expensive and difficult stages in

program verification is writing the formal specifi-
cations. Even if the system-level intended behav-
ior is known and documented, program verifica-
tion requires writing formal specifications for in-
dividual units of code. As discussed above, these
specifications are often enormous in size: the ini-
tial version of the seL4 verifiedmicrokernel required
200,000 lines of Isabelle code [11], while the specifi-
cation for the CompCert verified compiler was eight
times larger than the code itself [12]. In addition to
the huge amount of effort involved, the current ap-
proach to verified systems is based on building them
from scratch, as inferring intent from an existing
system would be impractical.
Our recent work on SpecRover [13] shows the

power of LLM agents for intent extraction from ex-
isting codebases. LLM agents [14] exploit large lan-
guage models (LLMs) but do so in an autonomous
way, with access to a variety of external tools. We be-
lieve that a similar agentic approach as in SpecRover
canbeused for specification inference for codeunits
in a complex software system for the purpose of
program verification. Roughly speaking, this would
amount to inferring the intended pre-conditions and
post-conditions for every function or method in a
large codebase.
Furthermore, GenAI makes it possible to take

advantage of artifacts which have previously been
largely inaccessible to automated program verifica-
tion, such as documentation, developer discussions,
and requests for comments. While imperfect, such
artifacts are rich sources that capture program in-
tent, which can be used to infer specifications.
Software systems need to be able to change, e.g.,

to add new features or adapt to new hardware plat-
forms and environments. As a result, specifications
needs to growandevolve aswell, to keep in syncwith
the software system. We believe that LLM agents
could make it easier to evolve specifications over
time, by adapting the old specifications to include
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Fig. 1: Architecture of planned Theorem Proving engine for Program Verification

the intent inferred for code changes. Our recent
work on patch specifications [15] could also be lever-
aged to write specification for code changes in a
modular way.

2.2 AI-driven Proof Search
The other research direction that could have a sig-

nificant impact on the scalability of program verifi-
cation is AI-driven proof search. Consider the task of
dispensing a proof obligation about a large software
system via top-down proof construction. We can
reuse and re-purpose the autonomous code search
in LLM agents such as AutoCodeRover [16] to dis-
cover code elements involved in intermediate lem-
mas as well as the desiderata of proof obligations
about such code elements. Instead of software ver-
ification amounting to a pure (and laborious) push-
ing of proof obligations via constraint propagation,
GenAI technology can contribute significant inven-
tive steps in discovering useful lemmas about differ-
ent units of a codebase. These lemmas can prove
properties of a large software system.
Inspiredby theAlphaProof approach [17] for prov-

ing mathematical theorems, we believe a mecha-
nism for program verification using GenAI is timely
and feasible. We plan to use a theorem prover as
a checker of proofs constructed by an LLM agent.
The checked proofs may be provided with feedback
based on the prover’s proof structure, and this can
improve the LLM agent’s proof construction capabil-
ity via a reinforcement learning loop. In time, we ex-
pect these verification workflows to be customized
for software, hardware, and embedded systems.

3. Perspectives
A rough architecture of our modern AI-driven

mathematical proof engine for computer programs
can be seen in Figure 1.
While LLM-assisted proof generation has al-

ready been leveraged in several recent research
projects [18, 19, 20, 21], a key insight that we plan to
explore is the virtuous cycle between specification
inference and proof search, trying to solve together,
rather than separately, the twokey challenges of pro-
gram verification.
Furthermore, while constructing mathematical

proofs, it is hard to move from a "state" of an unfin-
ished proof attempt to make progress. Why? This is
because a mathematician may have some intuitions
about inventive steps about which lemmas may be
fruitful to consider, which can be hard to encode
via reward functions. This is a key planned innova-
tion in our work. Instead of seeking to devise proof
construction tactics capturing general mathemati-
cal intuition, our focus will be on program verifica-
tion. For dispensing proof obligations about com-
puter programs, the code search and program anal-
ysis capabilities in agentic AI approaches [13, 16] will
be leveraged to capture intuitions about proving pro-
gram properties.
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